
THESIS

SINGLE-SPEAKER END-TO-END
NEURAL TEXT-TO-SPEECH SYNTHESIS

Master Thesis

by

Yves-Noel Weweler

Thesis submitted to the Department of Electrical Engineering and Computer
Science, University of Applied Sciences Münster, in partial fulfillment of the

requirements for the degree

Master of Science (M.Sc.)

Advisor: Prof. Dr.-Ing. Jürgen te Vrugt
Co-Advisor: Prof. Dr. rer. nat. Nikolaus Wulff

Steinfurt, October 10, 2018

Abstract

Producing speech is a natural process for humans, but challenging for computers.
Text-to-Speech (TTS) synthesis is generally considered a large scale inverse problem,
transforming short written sentences into waveforms. This transformation is highly
ambiguous and is influenced by many factors that are difficult to model. Traditional
systems are based on complex multi-stage hand-engineered pipelines, requiring exten-
sive domain knowledge; posing a significant challenge to model. This thesis introduces
and analyzes a neural end-to-end generative speech synthesis architecture derived from
Tacotron [1]. Instead of having humans identify and extract complicated rules and
patterns, the computer learns to produce speech from unaligned text-audio-pairs. All
components are described and training behavior as well as component effects are ana-
lyzed. Using a paired comparison 5-scale Mean Opinion Score (MOS) test comparing
the proposed system against two current TTS reference systems it achieves a score
of 3.4. Analysis suggests, that the feeding of ground-truth frames during training
and folding of the decoder target sequence using a reduction factor are essential for
predicting long sequences.

ii

CONTENTS

Contents

List of Abbreviations v

Glossary vi

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Structure . 3
1.3 Text-to-Speech Synthesis . 3

1.3.1 Methodology . 4
1.3.2 Objectives . 5
1.3.3 Physical Nature . 5
1.3.4 System Organization . 6

2 Background 8
2.1 Neural Networks . 8

2.1.1 Feed Forward Neural Network . 8
2.1.2 Convolutional Neural Network . 8
2.1.3 Gated Recurrent Unit . 9
2.1.4 Bidirectional Gated Recurrent Unit 10
2.1.5 Sequence to Sequence Architectures 10

2.2 Batch Normalization . 11
2.3 Dropout . 12
2.4 Character Embeddings . 13
2.5 Gradient Clipping . 13

3 Related Work 15

4 Model Components 17
4.1 Highway Network . 17
4.2 CBHG Module . 18

4.2.1 Filter Bank . 18
4.2.2 Projections . 20

4.3 Luong Attention Mechanism . 20
4.4 Griffin-Lim Algorithm . 23

5 Method 25
5.1 Model Architecture . 25

5.1.1 Encoder . 27
5.1.2 Decoder . 27
5.1.3 Post-Processing . 29
5.1.4 Waveform Synthesis . 29

5.2 Corpora . 30
5.2.1 Pre-Processing . 32
5.2.2 Feature Extraction . 32

5.3 Training Description . 33
5.3.1 Evaluation Metric . 34
5.3.2 Hyper-Parameters . 34
5.3.3 Experiments . 36

iii

CONTENTS

6 Results and Discussion 37
6.1 Blizzard Model Training . 37
6.2 LJ Speech Model Training . 39
6.3 General Training Discussion . 41
6.4 Feature Size . 42
6.5 Post-Processing . 42
6.6 Spectrogram Inversion . 46
6.7 Evaluation Survey . 47

7 Conclusions 50
7.1 Summary . 50
7.2 Limitations And Practical Implications . 51
7.3 Future Work . 52

Acknowledgments 52

List of Figures 53

List of Tables 53

References 54

Appendices 60

A Evaluation 60
A.1 Survey Design . 60

A.1.1 Mean Opinion Scores . 61
A.1.2 Reference Models . 61
A.1.3 Null Hypothesis . 61

A.2 Methodology . 62
A.2.1 Score Estimation . 62
A.2.2 Hypothesis Test . 63
A.2.3 Confidence Intervals . 63

B Corpora Statistics 64

C Evaluation Sentences 66

iv

List of Abbreviations

List of Abbreviations

ASR Automatic Speech Recognition

BN Batch Normalization

CBHG 1-D convolution bank + highway network + bidirectional GRU
CNN Convolutional Neural Network
CPU Central Processing Unit

DSP Digital Signal Processing
DT Decision Tree

EOS End of sequence

FFT Fast Fourier Transform

GRU gated recurrent unit

HMM Hidden Markov Model

IDTFT Inverse Discrete-Time Fourier Transform

LSMSPEC linear scale magnitude spectrogram
LSTM long short-term memory

MCD Mel-cepstral distortion
MCEP Mel-cepstral coefficient
MFCC Mel-frequency cepstral coefficient
MOS Mean Opinion Score
MSE Mean Squared Error
MS-LSD Modulation Spectrum Log-Spectral Distortion
MSMSPEC mel scale magnitude spectrogram

NLP Natural Language Processing
NMT Neural Machine Translation
NN Neural Network

ReLU Rectified Linear Units
RNN Recurrent Neural Network

seq2seq sequence-to-sequence
SOS Start of sequence
STFT short-time Fourier transform

TTS Text-to-Speech

v

Glossary

Glossary

aperiodic parameter Aperiodic parameters are the non-periodic parts of
voice. One example of this are unvoiced fricatives, i.e.
sounds that are emitted without any vibration of the
vocal cord. They result from the constriction of air
flow between the tongue and the roof of the mouth.

end-to-end Neural networks generally receive inputs and produce
outputs through processing the inputs across layers.
Training a network in an end-to-end manner refers to
training the entire system at once from the input layer
to the output layer. Therefore, optimizing all compo-
nents as one unit contrary to training units separate
and combining them later. In order to train a net-
work end-to-end, all modules of a network need to be
trainable themselves.

exploding gradient problem The exploding gradient problem refers to a large in-
crease in the norm of the gradient during training. [2]
Usually resulting in numerical problems handling the
gradient using a finite representation.

fine-tuning In the domain of neural networks, fine-tuning refers
to the process of further refining an already trained
model. Often with a larger or completely different
dataset than used to train the model initially.

gram An N -gram is a continuous sequence of N symbols,
commonly characters, words or phonemes for example.
An N -gram of size 1 is referred to as an “unigram”.
Subsequently, named “bigram” for size 2 and “trigram”
for size 3.

grapheme A grapheme is a basic building block used to create
words in written language. Graphemes are highly lan-
guage dependent. In alphabetic languages like English
and French, graphemes can be thought of as letters
or characters. While in languages like Chinese each
grapheme represents a full word or part of a word. [3,
p. 28]

vi

Glossary

overfitting Overfitting generally describes the process of a neural
network not capturing the underlying structure and
relationships of data processed, but memorizing and
predicting results for the training data. Therefore,
performing well on the training data but failing when
predicting data other than that seen during training.

phoneme A phoneme is the principal unit of form for verbal
content, i.e. spoken sound. Phonemes have no direct
meaning, they are the basic units or building blocks
used to form spoken words. [3, p. 14]

pre-train In the domain of neural networks, pre-training often
refers to the process of bootstrapping a model. The
typically randomly initialized network weights are con-
ditioned on a small or more generic dataset for exam-
ple. Afterwards, the model is fine-tuned specifically.

prosody In linguistics, prosody is commonly referred to as the
rhythm, stress and intonation of speech. In terms of
acoustics, the prosody of oral languages involve varia-
tion in syllable length, loudness, pitch and the charac-
teristic frequencies of speech sounds. [4]

spectral envelope The spectral envelope of a signal is the envelope of
the signal’s amplitude. It serves as a measure of how
amplitude varies over time.

vanishing gradient problem The vanishing gradient problem refers to the gradi-
ent going exponentially fast to norm 0 during training.
This behavior makes it impossible for a recurrent net-
work to learn correlation between temporally distant
events. [2]

vocoder A vocoder or voice coder, generates voice from a se-
quence of previously extracted parameters; hence re-
versing parameters back into voice. Typically, model-
ing the human vocal tract and its spectral character-
istics.

vii

1 INTRODUCTION

1 Introduction

The generation of synthetic voices using computers is a topic researchers investigate since
decades [5]. The process of Text-to-Speech (TTS) synthesis is a subdomain of speech
synthesis that aims to generate speech from written text. As stated by Taylor in [3],
TTS systems complement several other technologies from the domain of Natural Language
Processing (NLP). Their direct counterparts are Automatic Speech Recognition (ASR)
systems, whose purpose is to transcribe speech.

This thesis analyzes how neural generative speech synthesis can be used to synthesize
speech from unaligned text-audio-pairs in an end-to-end fashion. The proposed model
derives from the Tacotron architecture [1]. It is an attention-based sequence-to-sequence
(seq2seq) model achieving state-of-the-art results; that is 3.4 in a 5-scale Mean Opinion
Score (MOS) test1. A simplified schematic of the architecture is illustrated in figure 1. It
needs to be emphasized that this thesis focuses primarily on approaches from recent years;
particularly the Neural Network (NN) based ones.

Text
Fixedsize
embedding

Melscale
magnitude spec.

Waveform

Encoder Decoder PostProcessing Synthesis

Linearscale
magnitude spec.

Figure 1: Outline of the models processing stages. It is composed of four stages that
transform written text into an audio signal. The encoder and decoder produce a parameter
sequence from the text while the post-processing and synthesis components generate a
waveform from it.

Neural network based approaches perform well in various domains. Especially setting
records in accuracy on many tasks when handling input of varying length using seq2seq
models. [6]

Such tasks include image caption generation [7], text style transfer [8] and attention-
based seq2seq Neural Machine Translation (NMT) [9]–[12]. However, using these technolo-
gies in building a neural speech synthesis system shows that there are unresolved questions
to be explored. For example, little empirical data on the amount of mel filter banks required
to construct reasonable features for neural models is available [1]. Also worth exploring
are the effects of substituting Bahdanau-style attention [11] with the computationally more
efficient Luong-style [10].

Speech synthesis might still be associated with the subject of science fiction. Namely,
through the voice of HAL 9000 from the movie 2001: A Space Odyssey [13], or Majel
Barrett-Roddenberry’s voice of the onboard computer in the Star Trek television series
[14]. Albeit these particular systems being purely fictional, sophisticated synthesis sys-
tems exist these days. They are a regular part of our daily life with probably most people

1Higher is better, with 5 being the best possible score.

1

1 INTRODUCTION

having heard a synthetic voice at least once in their lifetime. A prominent example of
speech synthesis that comes to mind, might be the voice of professor Stephen Hawking
[15]. Today TTS systems are used to support vision impaired people, automate announce-
ment tasks at railroad stations or navigation systems, and include automated handling of
customers on the phone; just to name a few. Especially in the past speech synthesis has
seen an even more widespread use through the rise of smart-phones, smart-home devices
and personal assistants [16, 17, 18].

The synthesis of speech is generally considered a large scale inverse problem. The input
being short written sentences that contain a lot of compressed information. This input has
to be transformed into a sparse audio waveform of much greater length. The result of this
transformation is highly ambiguous and influenced by many factors that are difficult to
model. The same text can correspond to a variety of different pronunciations, speaking
styles and intonations. Even at a low sample rate like 16 kHz, on average 6,000 samples
per word have to be generated [19].

1.1 Contributions

This thesis contributes to the area of experimental single-speaker neural speech synthe-
sis. The primary contribution is the implementation and evaluation of a neural voice
synthesis solution that is inspired by current state-of-the-art architectures. The approach
makes little assumptions on the training data such that it is generally capable of modeling
different languages and alphabets. This work evaluates the influence of post-processing
as described in [1] and replaces their Bahdanau style attention with a Luong attention
mechanism. Furthermore, it contributes to a better understanding of the principle of func-
tion by comparing performance across datasets and exploring different amounts of features.

The overall goal is not to create a production ready system, but to explore and inves-
tigate neural voice synthesis. As described in section 1.3.2 there is a common notion on
what qualities are expected from a speech synthesis system. For once it has to clearly get
across the message, and secondly do this using a human-like, natural voice.

The primary contributions are as follows:

Implementation of a neural speech synthesis system that:

• can synthesize speech for a single speaker.

• can be trained using freely available corpora to maximize verifiability.

• can be trained from unaligned text-audio-pairs only in an end-to-end fashion, were
the text is composed of separated sentences.

• can be trained without the need for already existing helper models.

Evaluation of:

• the naturalness of the produced speech compared to two other TTS systems using a
MOS survey and paired difference hypothesis tests.

• the influence of different model components.

2

1 INTRODUCTION

• the performance on corpora with varying quality of the data.

• the effects of different amounts of target features.

The following configurations are explicitly not investigated:

• Active control of prosody using a markup language.

• Synthesis of speech for multiple speakers using a single model.

1.2 Thesis Structure

This thesis is organized as follows:

• Section 2 provides a basic introduction to NN fundamentals like Recurrent Neural
Networks (RNNs), seq2seq models, dropout and batch normalization.

• Section 3 gives an overview over previous work in the area of speech synthesis; espe-
cially neural TTS approaches.

• Section 4 presents the abstract building blocks the model is composed of, and estab-
lishes a fundamental grasp of Luong-style attention and the Griffin-Lim algorithm.

• Section 5 discusses the model architecture and its abstract processing stages. It re-
views the datasets and gives details on the implementation and the training process.

• Section 6 presents the resulting models, the MOS test survey and visualizes the effects
of individual components. Each of the findings is discussed separately.

• Section 7 briefly summarizes the main contributions, discusses the limitations and
offers future research suggestions.

• Appendix A contains the design and realization of the evaluation survey.

• Appendix B gives detailed statistics on the corpora used.

1.3 Text-to-Speech Synthesis

The generation of synthetic voices using computers is a topic researchers investigate since
decades [5]. TTS synthesis is a subdomain of speech synthesis that aims to generate speech
from written text.

There are numerous different models found in TTS systems. According to Taylor
they can be differentiated into various forms including Common-form, Signal-to-Signal,
Pipelined or Grapheme and phoneme form models [3, pp. 38–40], just to name a few.
However, as pointed out by Taylor, these models are not mutually exclusive and many
production systems are a combination of two or more models [3, pp. 40–41]. Since they
all share the same fundamentals, the following explanation in section 1.3.4 uses a common
pipelined model for exemplification.

Spoken language has a dual structure of sentences made up of words, and words con-
sisting of phonemes. Phonemes are the principal unit of form for verbal content, i.e. spoken
sound. They have no direct meaning, they are the basic units or building blocks used to
form spoken words. These words in turn are further combined into spoken sentences [3,

3

1 INTRODUCTION

Waveform
generation

Statistical parametric
synthesis

Formant
synthesis

Concatenative
synthesis

Unitselection
synthesis

Diphone
synthesis

Domainspecific
synthesis

Articulatory
synthesis

Figure 2: Overview of the primary waveform synthesis technologies. [4] The three primary
methods most commonly found [4] are shown with solid lines. For completeness the rare
articulatory synthesis method is shown grayed out (solid lines) as well. Indicated with
dashed lines are the sub-categories for the concatenative synthesis branch.

pp. 14 sq.]. There exists a similar dual structure for written text, were sentences like-
wise are made from words. These words are, however, constructed using graphemes not
phonemes. Graphemes are similar to phonemes but are much more language-dependent.
[3, pp. 28 sq.] Taylor describes them as follows:

In alphabetic languages like English and French, graphemes can be thought of
as letters or characters [. . .]; in syllabic writing like Japanese hira-gana, each
grapheme represents a syllable or mora, and in languages like Chinese each
grapheme represents a full word or part of a word. [3, p. 28]

This form of decomposition is not specific to TTS solutions, but is used in many applica-
tions within the field of NLP.

1.3.1 Methodology

There are three primary synthesis technologies commonly encountered [4]. These are
namely formant synthesis, concatenative synthesis and statistical parametric synthesis. Fig-
ure 2 gives an overview over the different technologies. For completeness a fourth method
called articulatory synthesis is also listed. This distinction is somewhat detached from
the actual implementation; may it be Decision Trees (DTs) [20], Hidden Markov Models
(HMMs) or NNs for example.

Formant synthesis tries to excite a set of resonators using a signal source like a noise
generator, forming the desired speech spectrum using filters [4]. Statistical parametric
models on the other hand usually extract parameters from speech and model these using
statistics. The actual speech is later constructed given the parametric representation of
a target speech sequence. Moreover, there exist concatenative systems. These systems
generate speech by selecting small sections of recorded voice and stitch them together to
form new speech. The synthesis quality is, therefore, directly related to the quality of the
recordings available. Articulatory synthesis models all the components of the human vocal
tract and their interaction with a simulated airflow. Note that this distinction is not as
rigorous in reality and that numerous mixed and hybrid solutions exist.

4

1 INTRODUCTION

Figure 3: Visualization of the human vocal mechanism [5]. Air from the lungs flows through
the glottis located between the vocal folds. As a result of air flow and muscle tension the
vocal folds vibrate and produce sound.

1.3.2 Objectives

There is a common notion on what qualities are expected from a speech synthesis system.
A synthesis system is expected to clearly get across the message, and secondly achieve this
using a human-like voice. [3, p. 3]

This two main priorities are referred to as intelligibility and naturalness [4, 3, pp. 3, 47–
49, 21]. Here, natural means that the system should sound just like a human. Intelligibility
on the other hand will be defined as the listeners’ ability to properly decode and hence
understand the message from the produced speech.

1.3.3 Physical Nature

Speech is a continuous, acoustic waveform humans produce by using their vocal organs. A
schematic diagram of the human vocal mechanism is shown in figure 3. Creating speech
like that requires a significant amount of intricate timing and motoric control. O’Malley
summarizes this process as follows:

Air pressure developed in the lungs flows through the trachea and the vocal
folds in the larynx. This opening between the vocal folds is called the glottis,
and the air flow as a function of time is called the glottal waveform. For voiced
sounds, the correct combination of air pressure and muscle tension causes the
vocal folds to vibrate, generating a series of pulses of air. [. . .] The noise
generated at the glottis or elsewhere in the vocal tract is modified as it passes
through the oral and nasal cavities and radiates from the head as a speech
waveform. [5]

5

1 INTRODUCTION

1.3.4 System Organization

As mentioned above, there exists a multitude of different methods used to realize TTS
systems. The actual setup is highly dependent on the system build. However, in many
systems, one often finds a list of modules arranged in a pipeline. Such pipelines might in-
clude modules for pre-processing, tokenization, text-normalization, part-of-speech tagging,
parsing, morphological analysis, lexicon, post-lexical rules, intonation, phrasing, duration,
fundamental frequency generation, unit selection and signal processing [3, p. 41]. The
process is seen as one of passing representations from one module to the next as needed.

The following explanation confines the set of stages mentioned above to the ones that
are most essential and most likely to be encountered. Namely, the pre-processing, duration
estimation and the prosody generation. Figure 4 depicts a functional diagram of a general
TTS system. The dotted stages are omitted and only the grayed out stages are discussed
hereafter.

Text Analysis

Natural Language Processing

PreProcessing

Morphological
analysis

Contextual
analysis

Prosody
generator

Syntactic
Prosodic Parser

Digital Signal
Processing

Waveform
generation

Text

Speech

Duration
estimation

LetterToSound
module

Figure 4: Schematic layout of a conventional Text-to-Speech system, derived from [22]. On
the highest level it is usually decomposed into a NLP component generating parameters
and a Digital Signal Processing (DSP) part synthesizing speech from it. The dotted parts
are omitted in this explanation and only the grayed out parts are discussed.

On the highest level the system is split into a NLP and a DSP component. The NLP
part is responsible for reading a text and transforming it into a sequence of parameters
suitable for synthesis in the DSP component. Frequently in the form of a phonetic tran-
scription augmented with prosodic information. An integral part of the NLP component
is the text analysis stage. It makes a distinction between written text (i.e. in the form of
characters) and its linguistic form (e.g. in the form of graphemes). The linguistic form can
be seen as clean, abstract and unambiguous, and the written form as a noisy signal that
has been encoded from this form [3, p. 26]. The purpose of the text analysis phase is to
extract this linguistic form.

6

1 INTRODUCTION

The parameters produced in the NLP component are used as input for the DSP phase.
This signal processing phase transforms the parameters into an actual waveform containing
speech.

Listed below are the procedures to be discussed:

Pre-Processing:
Writing as it occurs in the real word is ambiguous and noisy and requires cleanup. Text
contains several non-standard words such as numbers, abbreviations, homographs and
symbols built using punctuation characters such as exclamation point ‘ !’ or smileys ‘:-)’.
[4]

During pre-processing the text is, therefore, generally tokenized (i.e. dissected into to-
kens such as words) and normalized. Normalization spells out numbers that were written
using digits or replaces abbreviations with their written out form.

Duration:
Aspects of intonation and phrasing are manifested in differences in the timing of speech.
The task of duration estimation is to assign a temporal structure to utterances. [3,
pp. 257 sq.] This timing is most commonly formulated in terms of unit durations. From
experimental phonetics it is known that the temporal properties of speech are complex.
When talking more quickly every part an utterance contracts at a different rate, not by a
constant factor. For example, emphasis generally lengthens sections of speech in particular
ways. [3, pp. 257 sq.] Possible solutions for the generation of duration one might come
across are, deterministic rule based approaches like developed by Klatt [23, 3, pp. 259 sq.],
or statistical models like used in [24].

Prosody:
In linguistics, prosody is commonly referred to as the rhythm, stress and intonation of
speech. The prosody of oral languages involves variation in syllable length, loudness, pitch
and the characteristic frequencies of speech sounds. [4]

It is vital to create natural sounding speech and a key component to distinguish between
linguistic constructs like statements and questions.

However, prosodic information cannot be decoded from the text itself, therefore, ev-
erything is spoken with neutral prosody. There is certainly a limited prosodic component
in written language. Punctuation can be used to show structure; and underlined, italic or
bold text is used to show emphasis. Affective prosody on the other hand is nearly entirely
absent; there is no conventional way to show anger, pain or sarcasm. [3, p. 31]

7

2 BACKGROUND

2 Background

Subsequently, the following notation is used. Bold lower-case symbols (e.g. xi, b) denote
vectors and bold upper-case symbols (e.g. Wi, U) denote matrices. Italic characters (e.g.
m, n, M) represent scalars and cursive upper-case characters (e.g. C, X) specify sets and
sequences. For simplicity 0, 1 are defined to be vectors were each element equals 0 and
1, respectively. Furthermore, σ denotes the logistic sigmoid function2. It is assumed that
applying a function that operates on a scalar (e.g σ or tanh) to a matrix or vector, it is
applied to each element implicitly.

For graphical illustrations the following labeling and colors are used. Inputs are marked
orange, outputs are green and intermediate states are colored violet. Special inputs or
outputs are tagged in red. Simple operations (e.g activation functions) are illustrated as
gray blocks with sharp edges. More complex building blocks composed of simple operations
are depicted as blue blocks with rounded corners. There are two exceptions to that. The
conventional matrix addition is denoted as ⊕. Further, the concatenation operation � is
defined as shown in equation (1).

� : RM × RN → RM+N([
a1 . . . am

]
,
[
b1 . . . bn

])
7→
[
a1 . . . am b1 . . . bn

] (1)

2.1 Neural Networks

Due to this section covering common fundamentals of neural networks there exists a con-
siderable overlap with other work.3

2.1.1 Feed Forward Neural Network

A feedforward neural network consists of L layers where the l-th layer (l ∈ {1, 2, . . . , L})
applies a non-linear transformation H on its inputs. H is an affine transformation param-
eterized by a weight matrix W

(l)
H and a bias vector b(l)

H followed by an activation function
f . Note that the activation function is expected to be differentiable in order for backprop-
agation to work. Each layer receives an input vector x(l) and produces and output vector
y(l) as seen in equation (2). This is also known as a dense or fully connected layer.

y(l) = f
(
H(x(l),W

(l)
H ,b

(l)
H)
)

= f
(
W

(l)
H x(l) + b

(l)
H

) (2)

2.1.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) [26, pp. 326 sqq.] apply a set of discrete convolu-
tion operations whereby they are able to learn the window functions the input is convolved
with. Subsequently, these window functions are referred to as kernels.

At first let’s take a closer look at the discrete convolution operation. See figure 5 for
an illustration of a discrete convolution. Hereafter the two-dimensional case is considered.

2sigmoid function; σ(x) = (1 + exp(−x))−1 x ∈ R
3The contents of this section are in part created in consultation with Dangschat [25] who is creating a

ASR system at the time.

8

2 BACKGROUND

However, convolutions can be applied in any dimensionality. Let I ∈ RA×B be the input
and K ∈ RM×N denote the kernel to convolve with. K is assumed to be a valid probability
density function4. Then the convolution of I and K is written as shown in equation (3),
where ∗ denotes the convolution operation. [26, pp. 329 sqq.]

C(i, j) = (I ∗K)(i, j) =

M∑
m=1

N∑
n=1

I(i+m, j + n)K(m,n) 1 ≤ i ≤ A, 1 ≤ j ≤ B (3)

The amount at which i and j are incremented is referred to as the hop or stride. Assum-
ing a stride of 1 for any dimension, the operation results in a matrixC ∈ R(A−M+1)×(B−N+1).

Using convolutions in NNs has several benefits. The kernel can be applied regardless
of the input size, allowing the network to process variable length inputs. Furthermore,
CNNs require substantially fewer parameters, in turn reducing the memory requirements
and computational cost. Traditional feed forward NNs have a dense set of parameters
describing the interaction of each input unit with each output unit (see section 2.1.1).
Contrary, the weights of each kernel are effectively shared since multiple input units are
processed using the same kernel. Another benefit of convolutions is, that they are invariant
to translational changes in the input. [26, pp. 329 sqq.]

c

Input
Kernel

bw cx+
fy gz+

+ cw dx+
gy hz+

+

fw gx+
jy kz+

+ gw hx+
ky lz+

+ew fx+
iy jz+

+

aw bx+
ey fz+

+

Output

d

g h

k lji

b

fe

a
w x

y z

Figure 5: Illustration of a discrete 2-D convolution between an input of size 3 × 4 and a
2× 2 kernel using stride 1 in any direction. The figure is derived from [26, pp. 330 sqq.].

2.1.3 Gated Recurrent Unit

A gated recurrent unit (GRU) is a type of recurrent network cell introduced by Cho et al. It
is motivated by the long short-term memory (LSTM) cell [28] but has fewer computational
demands. LSTM cells usually have a memory cell and four gating units that adaptively
control the information flow inside the unit. GRU cells on the other hand have only two
gating units. [27]

4Fulfilling:
∑M
m=1

∑N
n=1 K(m,n) = 1 ∧ K(m,n) ≥ 0 ∀m,n

9

2 BACKGROUND

Note that lots of variations of both LSTM and GRU cells exist.

At each step t a GRU cell produces a hidden state vector ht. It is based on the cell’s
input vector denoted by xt and the last hidden state ht−1. The current input and the last
hidden state are combined into the new state ht using the reset gate rt and the update gate
zt. Equation (4) describes the computation of the hidden state vector ht, were ◦ denotes the
Hadamard Product5. The weight matrices W,U as well as the bias vectors b are learned
during training. The update gate controls how much information from the previous state
ht−1 is carried over to the new hidden state. The reset gate drops information from the last
state ht−1 before calculating the new state. Note that GRU cells only produce a hidden
state ht at each step t.

zt = σ (Wzxt + Uzht−1 + bz)

rt = σ (Wrxt + Urht−1 + br)

h̃t = tanh (Whxt + Uh (rt ◦ ht−1) + bh)

ht = zt ◦ ht−1 +
(
~1− zt

)
◦ h̃t

(4)

Using the gating mechanism the cell can seamlessly vary its behavior. Let’s assume
the reset gate rt is close to 0, then the new hidden state ht ignores the last state ht−1

and is primarily influenced by the current input xt. Thus dropping previously captured
information. Following, the update gate controls how much the previous state influences
the new hidden state.

2.1.4 Bidirectional Gated Recurrent Unit

Bidirectional GRUs are designed to be able to simultaneously access information from past
and future states. To achieve this two separate GRU cells are combined such that one
moves forward through time t and one moves backward through time. Note that this is
not limited to GRUs but rather arbitrary types of RNNs can be combined that way.

A GRU produces a sequence of forward hidden state vectors
−→
h t from the input

xt ∈ (x1, . . . ,xS) of length S. Another GRU produces a sequence of backward hidden
state vectors

←−
h t. For the backward direction the input is fed in reverse (xS , . . . ,x1).

This implies that the entire input sequence has to be available before it can be fed. The
bidirectional RNN hidden state ht at step t is then computed by concatenating the forward
and backward hidden states as shown in equation (5).

ht =
−→
h t �

←−
h t =

[−→
h t;
←−
h t

]
(5)

2.1.5 Sequence to Sequence Architectures

Sequence to sequence (seq2seq) models are a type of recurrent neural architecture with the
purpose of transforming sequences. Presented a source sequence (x1, . . . ,xS) of length S
a seq2seq model can construct a target sequence (y1, . . . ,yT) of length T . See figure 6 for
an illustration of a seq2seq architecture.

5Hadamard Product: A ◦B = (aijbij) with A,B ∈ Rm×n and 1 ≤ i ≤ m, 1 ≤ j ≤ n

10

2 BACKGROUND

<EOS>

x1 x2

h1 h2 h = h3

x3

Encoder Decoder

<SOS>

<EOS>

y
1

y
2

y
3

Figure 6: Exemplary layout of a generic sequence-to-sequence architecture. Here a re-
current encoder compresses a source sequence (x1,x2,x3) into a fixed-dimensional repre-
sentation h. A recurrent decoder decompresses this representation into a target sequence
(y1,y2,y3).

A generic seq2seq architecture consists of an encoder and a decoder stage [9]. The
idea being that the encoder computes a fixed-dimensional representation h of the input
sequence. The decoder decompresses this fixed-dimensional representation into the target
sequence. Typically, the encoder processes inputs until it encounters an End of sequence
(EOS) symbol, producing a sequence of encoder hidden states (h1, . . . ,hS). The EOS
symbol marks the end of the encoding sequence and causes the encoder to provide its last
hidden state hS as the fixed-dimensional representation h of the input. During decoding
the fixed-size representation is used to initialize the first hidden state of the decoder RNN.
Decoding then starts with a Start of sequence (SOS) symbol, generating one element of
the target sequence with each decoding step. At step t, to produce the output yt the last
output yt−1 is usually fed as input.

In practice, this seq2seq approach has some restrictions especially visible with increasing
sequence lengths. Modeling long sequences with a fixed-dimensional representation may
require having hidden states with excessive dimensionality, slowing down computation.
Furthermore, information contained early in the input sequence needs to be carried through
all encoder steps into the fixed-dimensional state [9].

These restrictions can be eliminated using attention mechanisms. While in general
seq2seq architectures do not depend on attention they are yet frequently combined. For
specific details on the integration and implementation of attention refer to section 4.3.

2.2 Batch Normalization

During training of NNs the distributions of each layer’s input changes, as the parameters
of the previous layers change. This complicates the training process and leads to problems
like the exploding gradient problem or the vanishing gradient problem. While especially
the former one is often counteracted using variations of the Rectified Linear Units (ReLU)
activation function [29] using careful initialization, Batch Normalization (BN) [30] can also
be used. BN tries to ensure that the distribution of nonlinearity inputs remains more stable

11

2 BACKGROUND

as the network trains. Allowing the usage of much higher learning rates to improve the
training speed. [30]

Consider a mini-batch B = {x1, . . . , xm} of size m with the input being scalars xi ∈ R
over the mini-batch. Let {yi = BNγ,β(xi)} denote the normalized mini-batch with γ, β ∈ R
being the parameters of BN to be learned. For intelligibility this example only uses scalar
values. In reality mini-batches and hence the inputs can be of arbitrary dimensionality.
The normalization process is split in two steps. During training first each scalar feature
is independently normalized to have a mean of zero and a variance of 1 for each training
mini-batch (equation (6)).

x̂i =
xi − µB√
σ2
B + ε

(6)

Were µB is the batch mean (equation (7)) and σ2
B is the batch variance (equation (8)).

Note that ε is a small value added for numerical stability.

µB =
1

m

m∑
i=1

xi (7)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (8)

Finally, in a second step two learned scalar parameters γ and β are used for scaling
and shifting (equation (9)); giving the batch normalized outputs yi.

yi = γx̂i + β ≡ BNγ,β(xi) (9)

However, during inference it is not desirable to use the above equations to perform BN.
Using them would result in nondeterministic outputs depending on the other elements
contained in a specific batch. Instead of normalizing over mini-batches like done during
training time, during inference the whole population is used. For that purpose moving
averages of µB and σ2

B are cumulated during training and are used instead during inference.

2.3 Dropout

Neural networks with many layers are capable machine learning systems. However, with
increasing network depth and a growing amount of parameters networks become prone to
overfitting. Dropout [31] is an approach to counteract overfitting of NNs.

Dropout is designed to resemble the combination of different models into ensembles
otherwise used to reduce overfitting and improve results. Ensembles combine many sep-
arately trained networks by averaging their outputs. While this may improve the results
it is also impractical and not always feasible. Instead, dropout alters the network dur-
ing training, to simulate the training of an ensemble. The main principle is to randomly
drop network units during training; preventing them from co-adapting too much. Here,
dropping a unit refers to temporarily removing the unit and all its incoming and outgoing
connections; thus forming a new NN. In its most simple form each unit is retained with a
fixed probability p ∈ R with 0 < p < 1. [31]

Removing units from the network is not desirable during inference. Therefore, when
not training, all units are included in the model whereby each units weight is scaled by its

12

2 BACKGROUND

probability of retainment p. Doing so effectively approximates the expected value of the
units output. [31, pp. 1931, 1933 sq.]

2.4 Character Embeddings

Embeddings are numeric representations (usually a high-dimensional vector) for capturing
the content of a sequence (e.g sentence) or a single element (e.g word, character). Con-
structing character embeddings refers to the process of transferring each character of an
alphabet into a vector representation. Representations are intended to be an abstract rep-
resentation of each character. The advantage is that they can be deducted from data. The
following description is in part derived from [12].

Let C be the vocabulary of characters. Then let d be the character embeddings dimen-
sionality and Q ∈ Rd×|C| be the embedding lookup matrix. Where each column vector of
Q represents an embedding for a character of the vocabulary. Note that the vocabulary
often also contains “virtual” characters. These may be introduced to mark the start or end
of a sequence. Furthermore, let S denote a character sequence (c1, c2, . . . , cl), of length
l constructed from the vocabulary C. For each character of S the corresponding charac-
ter embedding (i.e. column vector) is selected from Q, resulting in the embedded matrix
CS ∈ Rd×l for the sequence S. See figure 7 for an illustration of the lookup process.

q
 e q

 h q
 l q

 o

q
 h q

 e q
 l q

 l q
 o

Q

S

C S

h e l l o

Figure 7: Visualization of the character embedding lookup process. A character sequence
S is transformed into an embedded character sequence CS . This is done by looking up
embedding vectors for each character in the character embedding lookup matrix Q.

2.5 Gradient Clipping

Gradient clipping is a technique to deal with the exploding gradient problem by modifying
the gradients of a NN. When a network experiences a large increase in the norm of the
gradients during training this is referred to as the exploding gradient problem. As described
by Pascanu et al. dealing with such an increase in gradient norm is commonly done by
rescaling the gradients as their norm exceeds a threshold. [2]

This procedure can be carried out on different sets of gradients and using arbitrary
norms. Two approaches that might be encountered are clipping based on the gradient
norm of individual layers or clipping by the global norm of all gradients in the network.

13

2 BACKGROUND

Hereafter the global approach is explained using the Frobenius norm.

Let G = {G1, ...,Gx} denote gradient matrices calculated using any form of classical
backpropagation [26, pp. 200 sqq.] for a NN. Furthermore, let τ ∈ R denote the clipping
threshold and λ ∈ R (equation (10)) be the global Frobenius norm of all gradients in G.
The clipped gradients Ĝi are then calculated as shown in equation (11).

λ =

√√√√ x∑
i=1

||Gi||2F (10)

Ĝi =
Gi ∗ τ

max (λ, τ)
, 1 ≤ i ≤ x (11)

Note that if τ > λ, the gradients remain the same. However, if the global norm λ exceeds
the clipping threshold τ the gradients are scaled down in ratio to the global norm. While
this approach helps to prevent the exploding gradient problem, there are two points to
consider. First, it introduces the clipping threshold τ as an additional hyper-parameter.
Second, the normalization process requires all dependent gradients of the network to be
computed before clipping can be executed.

14

3 RELATED WORK

3 Related Work

There exist various approaches on how TTS can be implemented. Today one might roughly
differentiate them into classes like statistical parametric [32, 24], unit-selection or the rarely
seen formant synthesis [33]. Whereas numerous mixed and hybrid solutions are also in ex-
istence. See section 1.3 for more information. The following listing mainly focuses on the
work of recent years and refers only to older systems for completeness.

The statistical parametric models are referred to as statistical since they usually ex-
tract parameters from speech and model them using statistics. The actual speech is later
constructed given the parametric sequence. Generative HMM based models have seen a
lot of use in this area [24].

Beside the statistical approaches, in the past unit-selection systems [34] were the dom-
inating approach for over a decade [24]. According to [3, p. 522] in 2007, unit-selection
was still rated the highest quality synthesis technique. These systems generate speech by
selecting small sections of recorded voice and stitch them together to form new speech. The
synthesis quality is, therefore, directly related to the quality of the recordings available.
With enough high quality recordings the problem can be reduced to automatically finding
good patches of audio in a database. However, recording large datasets is a costly and
elaborate task [35].

Recently NN based approaches dominate the best performing models. Among them
auto-regressive models like WaveNet [36], that started delivering human level audio qual-
ity. During 5-scale MOS6 tests, measuring speech naturalness, WaveNet scored ∼4.21

compared to ∼4.55 measured for natural human speech [36]. WaveNet directly models
the audio samples of a waveform by probabilistically regressing new samples based on all
previous ones in a time series. While auto-regressive models tend to generate high quality
results their generation speed is slow because they process individual samples.

With the Deep Voice architecture [37] researchers replaced all components of the
pipeline (see section 1.3) with NNs. In addition, Char2Wav [21] demonstrates that the
number of pipeline stages can be condensed down significantly. Char2Wav uses RNNs
paired with attention [11]. They employ a seq2seq attention encoder-decoder architecture
[9] to predict parameters for the WORLD vocoder [38]. They combine this with a neural
vocoder model based on SampleRNN [19] for waveform generation. This results in only two
stages they need to pre-train separately. The model employs traditional vocoder parame-
ters like the spectral envelope, and aperiodic parameters. It requires separate pre-training
prior to end-to-end model fine-tuning.

With the publication of Tacotron [1] significant improvements in combining nearly all
stages of the pipeline into a single model were made. As a consequence, reducing the overall
complexity of the system. Like Char2Wav, Tacotron utilizes a seq2seq attention encoder-
decoder architecture. Tacotron produces magnitude spectrograms from text on a frame-
level. It can be trained in an end-to-end fashion without having to model intermediary
processing stages. This removes the need for pre-existing aligner models like required by
Char2Wav or Deep Voice.

6Higher is better, with 5 being the best possible score.

15

3 RELATED WORK

The later models Tacotron 2 [39] and Deep Voice 2 [40] are heavily influenced by
Tacotron. Deep Voice 2 introduces low-dimensional speaker embeddings to the architecture
in order to model multiple speakers. Tacotron 2 streamlines the Tacotron architecture and
replaces the Griffin-Lim vocoder with a neural vocoder based on WaveNet. Deep Voice 1
and Deep Voice 2 still retain some traditional pipeline stages like grapheme-to-phoneme
conversion, duration and frequency prediction. However, their successor Deep Voice 3 [41]
implicitly learns such conversions on the fly. Similar to Tacotron and Char2Wav their
architecture employs an attention-based seq2seq approach. But, Deep Voice 3 avoids
RNNs and employs a fully-convolutional version in order to speed up training and create
a production ready system.

16

4 MODEL COMPONENTS

4 Model Components

This section introduces the fundamental components needed for construction of the model
proposed in section 5. Note that the mathematical notation and the graphical elements
used hereafter are identical to that defined in section 2.

4.1 Highway Network

Accomplishments achieved by neural networks are often reached by stacking of successive
network layer to great depths7. However, with an increasing number of layers networks
become more and more difficult to train. Highway networks are a modification to con-
ventional feed forward networks that allow training with great depths that were nearly
impossible before. [42]

Highway networks introduce gating units to each layer of the network. These gates are
able to regulate the information flow, allowing unimpeded information flow across several
layers on so called information highways. The gating behavior is learned and enables the
highway networks to skip different processing steps hence rerouting the data flow around
layers as needed. This strategy is related to the regulation of information flow in GRU
RNNs [27]. GRUs use reset and update gates to control which information to throw away
and which values to update.

Let’s recall from section 2.1.1 how plain feedforward fully connected neural networks
work. Such a network consists of L layers where the l-th layer (l ∈ {1, 2, ..., L}) applies
a non-linear transformation H on its inputs. H is an affine transformation parameterized
by weights W

(l)
H and a bias b

(l)
H followed by a non-linear activation function. Each layer

receives an input vector x(l) and produces an output vector y(l). For reasons of readability
and comprehensibility the layer index l is dropped hereafter. Furthermore, the bias terms
of the non-linear activation functions are omitted for brevity.

As shown in equation (12) each highway network layer adds two additional non-linear
transformations T (x,WT) and C(x,WC). Were the weight matrices WT , WC as well as
the bias vectors are learned during training.

y = H(x,WH)T (x) + xC(x) (12)

T is referred to as the transform gate and C as the carry gate since they express how
much of the layers output y is produced by transforming and carrying its input x. The
implementation done in this work follows [42] and defines T (x) = σ(WTx + bT) were σ
denotes the sigmoid function. For simplicity the carry gate is defined as C(x) = 1− T (x)

and each layer is activated using the ReLU8 activation function. The layers output is
implemented as shown in equation (13).

y = relu [H(x,WH)T (x) + x (1− T (x))] (13)

Each highway layer can seamlessly vary its behavior for every element of the input
vector as can be seen in equation (14). It can vary between passing inputs to the next

7One usually speaks of depth although referring to an increasing amount of layers that are stacked.
8rectified linear unit function; relu(x) = max(0, x) x ∈ R

17

4 MODEL COMPONENTS

layer, therefore representing an identity transformation, or applying a transformation to
recreate the behavior of a plain feedforward layer.

y =

x if T (x) = 0

H(x,WH) if T (x) = 1

relu [H(x,WH)T (x) + x (1− T (x))] otherwise

(14)

To build a highway network an arbitrary number of highway layers is connected in
series. However, note that when building such networks the dimensionality of x, y, H(x)

as well as T (x) must be the same for all layers.

4.2 CBHG Module

A 1-D convolution bank + highway network + bidirectional GRU (CBHG) module is a
combination of multiple NNs, designed with the purpose of extracting representations from
sequences [1]. The subsequent explanation is inspired by work in NMT [12] that first in-
troduced this kind of module. Figure 8 shows a schematic overview of the components of
a CBHG module and their connections.
Let the input to the module be a sequence of vectors X = (x1, . . . ,xl) ∈ Rd×l of di-

mensionality d, were l is the length of the sequence. This input is first processed by a
1-D convolutional filter bank that employs filters of different width as described in sec-
tion 4.2.1. Its behavior is comparable to extracting N -grams from the sequence. The
result is of higher dimensionality than the input and is subsequently compressed down to
the same dimensionality as the input using convolutional projections (section 4.2.2).

Finally, the representations are fed into a multi-layer highway network followed by a
bidirectional GRU RNN. This RNN is used to extract sequential features from both the
forward and the backward direction.

4.2.1 Filter Bank

For a schematic illustration of the filter bank module see figure 9. Let F = {f1, . . . , fm} be
the filter bank consisting of m sets of 1-D convolutional filters fi ∈ Rd×i×n. The i-th set
contains a number of n different filters9 (i.e. kernels) of width i ∈ {1, 2, . . . ,m}. Each of
the filters can span multiple vectors and is convolved with stride 1 along the last dimension
of X (i.e. its columns). Hence, modeling unigrams, bigrams, up to m-grams. Additionally,
the columns of X are separately padded using 0 vectors for each set of filters. They are
inserted both at the beginning and end of the sequence, such that the number of columns
in the output of all convolutions is the same. This padding strategy is known as half
convolutions or same padding.

For clarification let’s consider a single arbitrary filter set fw ∈ Rd×w×1 with only a
single kernel of width w. The same padding strategy applies 0 vectors to the beginning
and end of X , such that the padded sequence becomes Xw ∈ Rd×(l+w−1). Therefore, w−1

additional zero vectors are inserted. When applying the convolution the resulting output
matrix

(
Xw ∗ fw

)
∈ R1×l has the same number of columns as X ; independently of the

filter width w.

9As demonstrated in [12] one may also use a varying number of filters ni for each set fi.

18

4 MODEL COMPONENTS

CBHG Module

Input

Conv1D
Filter Bank

MaxPooling

Residual
Connection

Highway
Network

BiGRU

Output

Conv1D

Batch
NormalizationProjection 1

Projection 2 RELU

Projection

d × l

dn × l

a × l

d × l

dn × l

d × l

2d × l

Figure 8: Schematic diagram of a CBHG module. The input sequence is first processed
by a 1-D convolutional filter bank. Extracting representations comparable to N -grams.
These are further compressed down to the dimensionality of the input sequence using two
projections. The output of these projections is added to the modules input using a residual
connection. Finally, a multi-layer highway network and a bidirectional GRU produce the
output sequence. The dimensionality of the data passed between components is indicated
on the left of the arrows.

19

4 MODEL COMPONENTS

All filter sets in F are applied such that Yi =
(
X i ∗ fi

)
∈ Rn×l with 1 ≤ i ≤ m, applies

all filters contained in each set. Finally, the output matrices are stacked row-wise as shown
in equation (15).

Y =

Y1

Y2

...
Ym

 ∈ Rmn×l (15)

Note that Wang et al. state that batch normalization is used for all convolutional layers
[1]. However, it is ambiguous if this statement also includes the convolutions within the
filter bank. In this work separate batch normalization is applied for each filter set fi.

4.2.2 Projections

The purpose of this stage is to project the filter bank outputs down to a lower dimension-
ality. First the filter bank output Y is max pooled along the columns using a stride of 1

and the same padding scheme that is also used for the filter bank convolutions. Pooling
is supposed to increase local invariances while also preserving the original time resolution
(i.e. the number of columns) [1].

Subsequently, the max pooled outputs are passed through two 1-D convolutions p1 ∈
Ra×w, p2 ∈ Rd×w of fixed width w to reduce the dimensionality. Note that the second
set contains d filters, were d is the number of rows of the original CBHG input X . The
convolutions use a stride of 1 and employ same padding. Each convolution output is
batch normalized, whereby the first layer activates the normalized output using the ReLU
activation function.

Applying both projections results in a matrix P ∈ Rd×l that is added to the CBHG
modules original input X ∈ Rd×l using a residual connection [43]. Therefore, the matrices
are added (X ⊕P), hence the requirement for having the same dimensionality.

4.3 Luong Attention Mechanism

The proposed model utilizes a seq2seq architecture. As detailed in section 2.1.5 such ap-
proaches commonly compress all information into a fixed-dimensional vector. However,
the fixed-size compression leads to restrictions as the sequence lengths increase. Here the
attention mechanism comes into play to eliminate the restrictions. Rather than presenting
a fixed representation of a variable length sequence to the decoder (section 2.1.5), it is
presented all information; selecting only the relevant data as needed.

Instead of Bahdanau attention [11] as proposed by Tacotron [1] this work implements
Luong attention [10]. Luong attention uses a simplified calculation and hence, can speed
up training. Luong et al. introduce two classes of attention mechanism [10]:

(a) A global approach which always attends all encoder hidden states.

(b) A local one that only considers a subset of encoder states at a time.

Following, this thesis describes only the global approach10 using GRU RNN cells. Fig-
ure 10 illustrates how the seq2seq model is fitted with global Luong attention.

10Deployment of the local approach is discontinued for this thesis.

20

4 MODEL COMPONENTS

PA
D
D
IN
G

PA
D
D
IN
G

PA
D
D
IN
G

∈ ℝ
1×l

d

l

B
an
k
1

B
an
k
m

Input

f2 fmf1 f3

Output

(∗) ∈
⎯ ⎯⎯⎯

f3 ℝ
n×l

(∗) ∈
⎯ ⎯⎯⎯

f1 ℝ
n×l

(∗) ∈
⎯ ⎯⎯⎯

f2 ℝ
n×l

BN

Filters

BN BN BN
Y

⎯ ⎯⎯⎯

(∗)
⎯ ⎯⎯⎯

f 1

2

(∗) ∈
⎯ ⎯⎯⎯

fm ℝ
n×l

∈ ℝ
1×l

(∗)
⎯ ⎯⎯⎯

f n

2
(∗)
⎯ ⎯⎯⎯

f n

3

∈ ℝ
1×l

∈ ℝ
1×l

(∗)
⎯ ⎯⎯⎯

f 1

3

Figure 9: Schematic diagram of the CBHG filter bank module. The input sequence is
processed bym different filter sets containing n filters each. The input is padded separately
for each of these banks such that the convolution outputs are all of same dimensionality.
For convenience the padded input X is assumed to always have the correct padding. For
each bank the results of the n filters are stacked into matrices of dimensionality Rn×l; each
one is batch normalized separately. Finally, all matrices are stacked row wise into a single
matrix.

21

4 MODEL COMPONENTS

<EOS>

x1 x2

h
⎯ ⎯⎯

1 h
⎯ ⎯⎯

2

x3

Encoder Decoder

<SOS>

<EOS>

+ (2)at + (3)at(1)at = ct

Context

Alignment weights

Attention Mechanism

ht

Concat

h
̃
t

h
⎯ ⎯⎯

1 h
⎯ ⎯⎯

2 h
⎯ ⎯⎯

3

Figure 10: Global Luong attention mechanism using GRU RNN cells. At each decoder time
step t the model infers a variable-length alignment weight vector at. This vector is based on
the current target state ht and all source states hs. Afterwards a global context vector ct
is computed as the weighted average of encoder source states using the alignment weights
at. [10] Note that contrary to the generalized seq2seq architecture shown in section 2.1.5
no fixed-dimensional representation is passed between the encoder and the decoder.

The recurrent encoder processes inputs X = (x1, . . . ,xS) and generates a sequence of
encoder hidden states hs ∈

(
h1, . . . ,hS

)
also called source states. These source states

are also commonly referred to as the memory. Afterwards a recurrent decoder generates
a hidden state ht ∈ (h1, . . . ,hT) called the target state for each decoder time step t.
However, contrary to the generalized seq2seq architecture described in section 2.1.5 no
fixed size representation is passed between the encoder and the decoder. Instead, the
decoder hidden states are initialized using zero vectors.

At each step t the model infers a variable-length alignment weight vector at based on
the current target state ht and all source states hs. For simplicity the s-th element of
the vector at is accessed by at(s). As shown in equation (16) each alignment weight is
computed by comparing the current hidden state with each source state using the softmax
function; consequently at(s) ∈ [0, 1] and

∑S
s=1 at(s) = 1.

at(s) = align(ht,hs) =
exp(score(ht,hs))∑S
s′ exp(score(ht,hs′))

(16)

Using the alignments from at as weights a global context vector ct (equation (17)) is derived
as the weighted average of the encoder source states hs.

22

4 MODEL COMPONENTS

ct =
S∑
s=1

at(s)hs (17)

Luong et al. consider three different alternatives for the score function namely dot,
general and concat [10]. This work deploys the dot variant (equation (18)).

score(ht,hs) = hTt · hs (18)

In order to compute the new attended hidden state h̃t the current decoder hidden state
ht and the context vector ct are concatenated. Subsequently, an affine transformation
using a matrix Wc without a bias term is applied and the result is activated using the
tanh function (equation (19)).

h̃t = tanh(Wc(ct � ht)) (19)

While the global Luong attention approach closely resembles that of the Bahdanau
attention mechanism [11], there is an architectural difference that needs to be considered.
Bahdanau et al. use a bidirectional encoder and hence the concatenated forward and back-
ward state hs. However, the original Luong publication [10] only uses the hidden states
at the top of a stacked recurrent decoder. Different from [10] the proposed architecture in
this work uses the concatenated hidden state for the attention mechanism.

4.4 Griffin-Lim Algorithm

This section is inspired by Sun et al. [44]. The Griffin-Lim algorithm [45] allows the esti-
mation of a signal only from the magnitudes of its short-time Fourier transform (STFT).
To reconstruct a signal from this representation it is necessary to invert the STFT, yield-
ing a reconstructed signal. However, often only the magnitudes and not their phases are
known making reconstruction problematic.

Let |Yφ(mR,ω)| denote the existing discrete-time magnitude STFT, were R ∈ N is the
hop size, φ(n) denotes the analysis window used in the STFT and n ∈ N is the time. The
variables m ∈ N and ω ∈ R index the time frames and frequency, respectively. The goal
is to find a signal x(n), whose magnitude STFT |Xφ(mR,ω)| minimizes the sum of the
squared errors with the existing |Yφ(mR,ω)| (equation (20)). [44]

∞∑
m=−∞

∫ π

−π
(|Xφ(mR,ω)| − |Yφ(mR,ω)|)2 dω (20)

Griffin et al. achieve this by starting with a random guess x(0)(n) of the signal. Then
iteratively applying two processing stages until the convergence of equation (20). For each
iteration i the two stages can be summarized as follows:

1. Compute the STFT X
(i)
φ (mR,ω) of the current signal estimate x(i)(n). Retain the

phases of X(i)
φ and replace the magnitudes with the magnitudes |Yφ(mR,ω)| of the

existing spectrogram.

23

4 MODEL COMPONENTS

2. Compute the Inverse Discrete-Time Fourier Transform (IDTFT) of X(i+1)
φ (mR,ω),

denoted x̂
(i+1)
φ,mR(n), for each m.11 Using equation (21) a new approximation x(i+1)

of the signal x(n) is calculated. This is achieved by finding a windowed version
xφ,mR(n) of x(n), that is close to x̂(i+1)

φ,mR(n).

x(i+1)(n) :=

∞∑
m=−∞

φ(mR− n)x̂
(i+1)
φ,mR(n)

∞∑
m=−∞

φ2(mR− n)

(21)

Griffin et al. show that this algorithm decreases the objective (equation (20)) with each
iteration, converging to a stationary point. However, note that different initializations of
x(0) can lead to different solutions. There is no guarantee that the algorithm converges to
a global optimum. [44]

11The optimal solution is considered: x̂(i+1)
φ,mR(n) = φ(mR− n)x(n)

24

5 METHOD

5 Method

This section discusses the proposed architecture, gives an overview over the corpora, hyper-
parameter used and the experiments. Section 5.1 introduces the architecture. It decom-
poses the model into separate stages and illustrates each of them in-depth. Section 5.2
highlights the corpora as well as the preparation of the training data. Finally, section 5.3
details the training process and lists the used hyper-parameters. Following, figures use the
same colors and labeling as defined in section 2.

5.1 Model Architecture

The proposed system directly derives from the Tacotron architecture [1]. Like Tacotron it
employs a seq2seq encoder-decoder architecture with attention integrated into the decoder.
A schematic of the architecture is illustrated in figure 11.

The model receives a written sentence in the form of text as input and models speech
in the form of a waveform. The architecture is divided into four consecutive stages. The
encoder processes the written text and produces a fixed-size embedding for each charac-
ter. By iteratively producing spectrogram frames the decoder stage generates a mel scale
magnitude spectrogram (MSMSPEC) from this fixed-size embedding. The subsequent
post-processing stage is used to clean and refine the spectrogram. It also transforms
the mel spectrogram into a linear scale magnitude spectrogram (LSMSPEC) for the final
waveform synthesis. Note that this section does not refer to hyper-parameters and di-
mensions directly; all parameters for each stage can be found in section 5.3.2.

Training a system as a whole unit to directly model a target based on the given input
(without explicitly modeling intermediate stages), is referred to as end-to-end training.
While the encoder, decoder and post-processing stage employ neural networks, the syn-
thesis stage converting spectrograms into waveforms does not. Waveform synthesis is done
using a set algorithm; hence it is not optimized through the training process. When consid-
ering the conversion of text to speech (i.e. waveform synthesis) this particular architecture
can not be considered direct end-to-end trainable but rather trainable in an end-to-end
fashion.

As hinted in section 1.3, TTS systems can be differentiated into numerous approaches.
The proposed model may best be classified as the Text as language approach. Taylor
characterizes this approach as follows:

[. . .] the process is seen as basically one of synthesis alone. The text itself is
taken as the linguistic message, and synthesis is performed from this. [3, p. 39]

25

5 METHOD

<SOS>

DecoderAttention
Mechanism

Concatenation

Waveform synthesis

Melscaled magnitude
spectrogram

Waveform

Text

Encoder

Encoded
characters

Memory

<EOS>

PostProcessing

Figure 11: Schematic diagram of the proposed model architecture. It receives text as input
and models speech as a waveform. The encoder produces a fixed size embedding for each
character in the text. The attention based decoder iteratively produces spectrogram frames
forming a MSMSPEC from the fixed-size embeddings. A post-processing stage transforms
the MSMSPEC into a LSMSPEC for waveform synthesis in the synthesis stage.

Text

Character Embedding

Prenet

CBHG

Encoder

Encoded character
sequence

<EOS>
(a) Schematic diagram of the encoder stage.
The entered text is transformed into charac-
ter embeddings of higher dimensionality. These
embeddings are passed through a pre-net and
a CBHG module to extract a robust high-
dimensional representation for each character
of the text.

CBHG

PostProcessing

Intermediate
representation

Melscaled magnitude
spectrogram

Fully Connected

Linearscaled
magnitude spectrogram

(b) Schematic of the post-processing stage. A
CBHG module reduces artifacts and errors in
the MSMSPEC producing an intermediate rep-
resentation. This representation is transformed
into a LSMSPEC using a fully connected layer.
The intermediate representation is not expected
to be a spectrogram.

Figure 12: Schematic diagrams of the encoder and the decoder stages.

26

5 METHOD

5.1.1 Encoder

The encoder is the first processing stage in the architecture. Its main purpose is to gener-
ate a robust sequential representation of the text it receives as input. Figure 12a gives a
schematic overview of the encoder.

First for each character of the entered sequence a fixed-size character embedding is
generated (refer to section 2.4). Additionally, the virtual EOS and the padding (PAD)
symbols are assigned an embedding as well. The EOS symbol is appended to each written
sentence such that the encoder’s RNN has a clear indication to when a sentence ends.
Contrary, the padding symbol (PAD) does not yield any information. It is solely used to
pad multiple sequences in a mini-batch to equal length such that they can be processed
in parallel. Note that the embeddings are optimized like normal parameters (i.e. learned)
during model training.

Subsequently, a non-linear transformation referred to as “pre-net” is applied to each
embedding. The pre-net consists of a set of stacked fully-connected network layers of
gradually decreasing size; of which each is paired with a dropout component. This pre-
net is used as a bottleneck such that the embedding vectors are compressed into a lower-
dimensional representation. The dropout is supposed to improve generalization and reduce
overfitting.

A CBHG module is used to transform the output of the pre-net into the final encoder
representation. See section 4.2 for a detailed description on the mechanics of the CBHG
module. The convolutional filter banks used in the module explicitly model local and
contextual information comparable to modeling unigrams, bigrams, up to N-grams for
text [1]. Since the CBHG module incorporates a bidirectional RNN it additionally provides
sequential features both from the forward and the backward context. Note that the output
still contains the same number of elements (although higher dimensional) as the encoder
input has characters. Wang et al. found that this CBHG-based encoder not only reduces
overfitting, but also leads to fewer mispronunciations compared to a standard multi-layer
RNN used as the encoder [1]. Especially the contained highway networks are reported to
significantly improve the quality of character-level models when used with convolutional
layers [12, 46].

5.1.2 Decoder

The decoder is the central component of the model. Based on the encoded characters it
receives from the encoder it generates a MSMSPEC that is suitable for later synthesis.
Please refer to section 5.2.2 for a detailed description on why this feature representations
is used. It is implemented as a seq2seq attention decoder and employs a stateful recurrent
attention layer. Figure 13 shows a schematic representation of the decoder.

The decoder does not generate the MSMSPEC target in a single step, but rather
models it as a sequence of spectrogram frames. With each decoding iteration a set of r
individual non-overlapping frames is produced. Since the decoder is an attention based
seq2seq decoder there is no direct connection between the encoder’s output and the decoder
RNN cell input. The actual input for to each iteration is a single spectrogram frame. The
encoded text representation from the previous stage is fed as the “memory” to an attention

27

5 METHOD

Decoder

Attention
Mechanism

Prenet

GRU Cell

Attention
Mechanism

Prenet

GRU Cell

<SOS>

Decoder
RNN Cell

...

...

Decoder RNN Cell

Attended Memory

GRU Cell

GRU Cell

Fully Connected

Decoder
RNN Cell

Reshape

2

Add

Add

2 Flattened seq2seq target...

Seq2seq target
with r = 3

Decoder RNN

Attention RNN

Figure 13: Schematic diagram of the decoder stage. Single MSMSPEC frames are fed as
input to produce a set of r subsequent non-overlapping spectrogram frames at each decod-
ing step. Starting with a SOS frame each input first passes a pre-net and an attention RNN
producing a robust sequential input for the attention mechanism. The attention mecha-
nism uses it to derive new alignment weights and select encoder character representations
for the current decoding step. It produces the “attended memory” which is then decoded
into the sequence of r spectrogram frames using a stacked residual GRU RNN. The last of
the r frames is then fed as input to the next decoder step.

mechanism. This data flow can be seen in figure 11. Until a break condition is met the
last of the r frames from the previous decoder iteration is used as the input to the next
one. Note that this is only done during inference and evaluation. While during training r
frames are likewise predicted, instead of feeding the last frame as input the corresponding
frame from the ground-truth spectrogram (i.e. the training data) is fed.

As the decoder has no direct indication when to stop producing frames decoding is
stopped after a set number of iterations. At the first decoding step there is no input frame
and likewise there are no previous cell states for the internal RNN cells. A synthetic SOS
frame (zero vector) is fed as the first input and all GRU cell hidden states are likewise
initialized using zero vectors.

During decoding the entered spectrogram frame is first processed using a two layer
pre-net. Like the pre-net used in the encoder it uses dropout which is essential for the
model to generalize. After the pre-net, the processed frame enters the attention RNN
composed of a single GRU layer. This layer produces a robust sequential attention query

28

5 METHOD

at each decoder time step. The query generated by the attention layer is used by the
attention mechanism. At each iteration the attention mechanism calculates a discrete
probability distribution (called alignment) over the encoded characters based on the query.
The alignments capture which encoder steps (hence characters) are expected to be relevant
for the current r frames to be generated. Memory, alignments and attention query are
combined by the mechanism producing the attended memory (refer to figure 10).

The subsequent decoder RNN consists of stacked GRU cells with vertical residual con-
nections [47] to speed up convergence. As can be seen in figure 13, a subsequent fully-
connected layer and a reshape operation transform the cell output into the final seq2seq
target.

The process of generating r subsequent non-overlapping frames at each decoder step
is an important design choice. When predicting r frames in one decoder step, the total
number of decoder steps required divides by r. This in turn reduces the training and
inference times while also reducing the model size. As reported by Wang et al. this trick
substantially increases convergence speed, as measured by a much faster and more stable
alignment learned from attention. They attribute this to the high temporal correlation
between successive spectrogram frames. Emitting multiple frames at once forces the model
to compress the redundant information and capture modalities of multiple frames in one
step. Attention is not forced to attend to the same input token for multiple time steps
such as when only emitting one frame at a time. [1]

5.1.3 Post-Processing

The post-processing stage is the last neural network based stage of the model. Figure 12b
shows a schematic of this stage. Post-processing has two main tasks. First it enhances the
MSMSPEC it receives as input by correcting decoder prediction errors. Second it converts
the input into a LSMSPEC suitable for waveform synthesis.

The spectrogram received from the decoder is enhanced using a CBHG module. Like in
the encoder stage the contained filter banks can capture local and contextual information;
identifying inconsistencies in the magnitudes. Additionally, it uses forward and backward
information to correct the prediction error for each individual frame; in contrast to the
decoder which always runs from left to right [1]. Note that the output of the CBHG module
is of higher dimensionality than the MSMSPEC and is not expected to be a spectrogram but
rather an intermediate representation. However, the subsequent synthesis stage excepts
a LSMSPEC as input. In order to generate this a fully-connected layer transforms the
intermediate representation into a magnitude spectrogram of linear scale.

5.1.4 Waveform Synthesis

Waveform synthesis is the final stage of the architecture. Like in [1] it uses the Griffin-Lim
algorithm to synthesize a waveform signal from the LSMSPEC the post-processing stage
produces. The algorithm iteratively minimizes the Mean Squared Error (MSE) between the
STFT of the reconstructed signal and the target signals STFT. For a detailed description
of the algorithm refer to section 4.4.

As hinted by Wang et al., while Griffin-Lim is differentiable, it does not have trainable
weights [1]. Hence, it is not a neural component and therefore it is not optimized through

29

5 METHOD

training. In this work it solely implemented on the Central Processing Unit (CPU) as a
subsequent processing step to the neural network.

Prior to feeding the predicted magnitudes to the algorithm, they are raised by a power
of 1.3 as it is reported to reduce artifacts in the reconstructed signal [1]. Then 50 iter-
ations of the Griffin-Lim algorithm are performed. Wang et al. also use 50 cycles whilst
reporting that 30 iterations seem to be enough [1]. Figure 14a illustrates the reconstruc-
tion MSE in relation to the number of iterations used. Note that the computation time
for reconstruction grows linearly with the number of iterations as shown in figure 14b.

20 40 60
Iteration

10−3

10−2

10−1

100

M
S

E
(d

B
2
)

(a) Plot of the Mean Squared Error of the
Griffin-Lim algorithm in relation to the number
of iterations used. The plotted MSE is averaged
over 250 randomly selected waveforms from the
Blizzard corpus. Note that the error is plotted
on a logarithmic scale.

20 40 60
Iteration

0

2

4

6

D
u

ra
ti

on
(s

)

(b) Computation time (CPU) of the Griffin-Lim
algorithm in relation to the number of recon-
struction iterations used. The algorithm scales
linearly with the number of iterations. While
performance depends on the hardware, the lin-
ear behavior remains consistent.

Figure 14: Reconstruction error and computation time of the Griffin-Lim algorithm.

5.2 Corpora

In accordance with the goals from section 1.1 the training data is freely available such that
results can be copied and verified. The datasets contain speech from a single speaker in
the form of continuous spoken sentences together with corresponding transcripts. That
way the model can be trained in end-to-end fashion imposing little restrictions on the
data. However, little information exists on how much data is actually required to achieve
a working single speaker model. Nevertheless, like with unit selection systems, one can
expect a clear relation between having more data and achieving better results [3, p. 522].
Better results manifesting in having less miss-pronunciations, less noise in the generated
signal or an overall increase in perceived naturalness.

As the objective is to explore the architecture the amount of data used for training
is derived from other exploratory work in this area. Table 1 lists dataset durations used
by other single speaker TTS models. As can be seen most systems are evaluated using
non-public English corpora and are trained with 20 to 35 hours of speech. In order to
achieve comparable results for evaluation ideally the same dataset must be used to train
each model. As nearly all datasets listed in table 1 are internal datasets that are not freely
accessible, this work focuses on different publicly available corpora.

30

5 METHOD

Table 1: Overview of datasets and their durations used by other single speaker TTS models.
Almost all models are trained using non-public internal English datasets. The duration
used for training ranges from 20 to 35 hours of speech. The amount of data used by
Char2Wav is unknown.

Model Duration (h) Language Corpus

Tacotron [1] 24.6 eng. internalTacotron 2 [39]

WaveNet [36] 24.6 eng. internal34.8 chi.

Deep Voice [37]
20.0 eng. internalDeep Voice 2 [40]

Deep Voice 3 [41]

Char2Wav [21] — eng. CSTR VCTK [48]

Two distinct datasets are used for training:

Blizzard Challenge 2011 Dataset
The Blizzard Challenge 2011 dataset12 [49] is a single speaker English voice corpus. The
recorded speaker is a professional female voice coach with American English accent. It
contains a total of 16 hours and 45 minutes of studio quality recordings of short sentences
in neutral speaking style with corresponding transcriptions (see appendix section B for
statistics). This corpus was used as the official dataset for the Blizzard Challenge 2011
[49].13 It’s licensing allows it to be used for research free of charge.

This corpus contains around 3 hours and 15 minutes fewer data than the smallest
dataset listed in table 1. However, it is selected because it is actually created for the pur-
pose of building a TTS system and offers high quality recordings with a neutral speaking
style.

LJ Speech Dataset
The LJ Speech dataset14 [50] is a public domain speech dataset recorded by the LibriVox
project15. It consists of short audio clips read in English by a single female speaker16. All
recordings are passages from 7 non-fiction books together with corresponding transcrip-
tions. The texts were published between 1884 and 1964, they are public domain.

The recorded clips have a total length of approximately 24 hours. All clips were seg-
mented automatically based on silences in the recording. Ito matched the text to the audio
manually and a QA pass to ensure that the text accurately matches the words in the audio.
[50]

The duration matches that used by other models as listed in table 1. However, the
recordings are of lower quality compared to the Blizzard Challenge 2011 dataset. To asses
the ability to learn from different amounts of data with varying quality, this dataset is used
to train separate models.

12Also known as the Nancy corpus; referring to the speaker Nancy Krebs.
13The Blizzard challenge is held annually with the goal to compare researched techniques in building

corpus-based speech synthesizers on the same data.
14Version 1.1 of the LJ Speech dataset is used in this work.
15LibriVox project: https://librivox.org/
16Recordings by Linda Johnson (https://librivox.org/reader/11049)

31

https://librivox.org/
https://librivox.org/reader/11049

5 METHOD

5.2.1 Pre-Processing

Although training is done in an end-to-end fashion, data from the corpora is pre-processed
to ensure the data is consistent. The textual transcriptions and the speech recordings from
the datasets are processed as follows:

Text Processing:

• All characters are converted to lowercase.

• Sentences containing digits (e.g. ages, dates, years, weights) are replaced with a full
textual representation matching to the recordings.17

• Abbreviations are written-out18.

• All characters other than a-z, ␣, and " ’ - , ; : () ! ? are stripped.

• Each sentence is closed with the virtual EOS character.

Note that this text processing procedure closely resembles that used by many other TTS
approaches (see section 1.3.4).

Waveform Processing:

• Files containing only silence or breathing are dropped.19

• Non-deterministic silence at the beginning of recordings (applies only to LJ Speech)
is removed. This is done by thresholding the signal power with a manually chosen
limit.

• Spectrograms are extracted and normalized as described in section 5.2.2.

5.2.2 Feature Extraction

The model receives written text as input and produces speech in the form of a waveform
signal. However, as described in section 5.1 the final synthesis stage is of non-neural nature
and requires a LSMSPEC as input. While a LSMSPEC is suitable for waveform synthesis
it is a highly redundant representation of the information actually needed during decoding.
This redundancy makes the model more complex and restricts the process of learning an
alignment between the written text and the speech signal. However, learning this align-
ment is ultimately the goal of the seq2seq attention architecture. Therefore, the decoder
is designed to predict more compact MSMSPEC frames instead.

The basic idea behind using MSMSPEC is, that not all frequency bands contained in
the linear scale spectrogram are of equal importance in human speech. The mel scale is a
perceptual scale of pitches that effectively allows the reduction of frequency resolution as
the frequency increases. Let’s consider the typical range of human voice. The major bulk
of signal energy is contained below 5 kHz, although voice can contain frequencies up to 20

kHz [51]. This can greatly vary depending on age, sex and origin of the speaker.
17For example: “He died in 1855.” becomes “He died in eighteen fifty five.”
18For example: “mr.” becomes “mister”
19Files containing only breathing or silence are identified by their missing transcriptions.

32

5 METHOD

0 0.5 1 1.5

Time (s)

0

2

4

6

8
k
H

z

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(a) Linear scale magnitude spectrogram in deci-
bel representation.

0 0.5 1 1.5

Time (s)

0

0.5

1

2

4

k
H

z

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

(b) Mel scale magnitude spectrogram in decibel
representation.

Figure 15: Visualization of linear and mel scale magnitude spectrograms. Using the begin-
ning of the randomly chosen utterance “Preparations for tropical cyclone [. . .]” (RURAL-
02198) from the Blizzard dataset as an example.

Using a randomly chosen utterance from the Blizzard dataset figure 15a illustrates that the
main structural part is contained below 4 kHz. Since frequency bands above 4 kHz carry
less information the spectrogram can be highly compressed, as long as it provides enough
intelligibility and prosody information for an inversion process. A comparison between a
linear scale and a corresponding mel scale magnitude spectrogram can be seen in figure 15.

The parameters used for spectral analysis are listed in table 2. For the calculation of
the STFT spectrograms the Hanning window function is used and the waveform signal is
sliced into windows of 50 ms width with a hop of 12.5 ms. The linear scale frequencies
are build using a Fast Fourier Transform (FFT) window size of 2,048 and the mel scale is
build using 80 mel banks. As opposed to [1], no pre-emphasis filtering is applied to the
waveform signal before spectrogram calculation.

Prior to training the minimal and the maximal linear and mel scale spectrogram mag-
nitudes are calculated for each dataset. They are determined over the training subset
of the Blizzard and the LJ Speech dataset. Before feeding the spectrograms for training
or evaluation they are converted into an absolute decibel representation with the refer-
ence being a magnitude of 1. Towards zero the magnitudes are capped to 10−5, hence
−100 dB. Afterwards they are linearly scaled down to the range [−100, 0] dB using the
minimum and maximum decibel magnitudes calculated over the datasets. Subsequently,
this range is scaled linearly such that the numeric values fit the range [0, 1]. Note that the
spectrograms are not processed to have zero mean or a constant standard deviation.

5.3 Training Description

The architecture is trained separately both on the Blizzard and the LJ Speech dataset for
the experiments described in section 5.3.3. Both datasets are split into non-overlapping
train and evaluation sets as shown in table 7. Training progression is measured and tracked
using the evaluation metric described in section 5.3.1. The models are evaluated every
5,000 batches to check if overfitting occurs. This strategy helps to determine if training
still progresses or if performance has converged and the training has to be halted. The
gradient clipping threshold used to prevent the gradients from exploding is set to 5.0.

33

5 METHOD

Prior to training Glorot normal initialization also known as Xavier initialization is used
[52]. It is applied to nearly all weights of the model except for some bias vectors. The
GRU cells internal biases and the ones used in the convolutional layers are initialized to
~1 and ~0, respectively. All highway network layers use a negative transform gate bias of
(−~1), as a small negative bias is reported to be beneficial for highway layers [42].

For a detailed specification of the hyper-parameters refer to section 5.3.2.

5.3.1 Evaluation Metric

Synthesis performance is measured using `1 loss for both the decoder MSMSPEC target
and the post-processing LSMSPEC target. Let the matrices M, M̂ ∈ RNm×T denote the
magnitudes of the mel scale spectrograms from the training data and the decoder, respec-
tively. Were Nm is the number of mel bins used and T the number of spectrogram frames.
Likewise, let L, L̂ ∈ RNl×T denote the equivalent magnitude matrices of linear scale from
the training data and the post-processing stage, respectively. With Nl being the number
of discretized frequency bins for the linear scale. Then the decoder loss `d is calculated as
shown in equation (22) and the post-processing loss `p as shown in equation (23).

`d = ‖M − M̂ ‖1 =
T∑
t

Nm∑
f

|Mft − M̂ft | (22)

`p = ‖ L− L̂ ‖1 =
T∑
t

Nl∑
f

| Lft − L̂ft | (23)

The rows of the spectrograms are indexed by frequency f and the columns are indexed
by time t. Note that the zero padding frames inserted when mini-batches are created are
not masked during the calculation of the loss. Hence, the network is conditioned to produce
zero frames after it stops producing speech. Both losses are combined with equal weight
as shown in equation (24) to form the total model loss `t used for training and evaluation.

`t = `d + `p (24)

5.3.2 Hyper-Parameters

The parameters in use are listed in table 2. The models are trained using stochastic
gradient descent with the Adam optimizer [53], setting β1 = 0.9, β2 = 0.999 and ε = 10−8.
Instead of using a piecewise constant learning rate like [1] the learning rate is set to 0.001

and decays exponentially with an anneal rate of 0.9 every 20,000 batches. For training,
mini-batches of size 40 are build and the entire dataset is shuffled after each epoch.

Prior to feeding the LSMSPEC to the Griffin-Lim algorithm the magnitudes are raised
to the power of 1.3.

34

5 METHOD

Table 2: Hyper-parameters of the proposed model architecture. The term “conv-k-c-ReLU”
denotes a 1-D convolution with kernel width k and c output channels (i.e. separate kernels).
ReLU denotes the Rectified Linear Units (ReLU) activation function. FC denotes a fully-
connected layer.

Component Parameter

Training Batch size: 40
Optimizer: Adam, α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8

Gradient clipping norm: 5.0

Spectral analysis Frame length: 50 ms, frame shift: 12.5 ms
FFT window size: 2048
Window type: Hann
Mel bands: 80

Character embedding 256-D

Encoder pre-net FC-256-ReLU → Dropout(0.5) →
FC-256-ReLU → Dropout(0.5)

Encoder CBHG Conv1D bank: K=16, conv-k-128-ReLU
Max pooling: stride=1, width=2
Conv1D projections: conv-3-128-ReLU → conv-3-128-Linear
Highway network: 4 layers of FC-128-ReLU
Bidirectional GRU: 128 cells

Decoder pre-net FC-256-ReLU → Dropout(0.5) →
FC-256-ReLU → Dropout(0.5)

Attention RNN 1-layer GRU (256 cells)

Attention mechanism Type: Luong-style
Mode: Global attention (dot)

Decoder RNN 2-layer residual GRU (256 cells)

Post-processing CBHG Conv1D bank: K=8, conv-k-128-ReLU
Max pooling: stride=1, width=2
Conv1D projections: conv-3-256-ReLU → conv-3-80-Linear
Highway network: 4 layers of FC-128-ReLU
Bidirectional GRU: 128 cells

Reduction factor (r) 5

Griffin-Lim 50 iterations

35

5 METHOD

5.3.3 Experiments

To evaluate and assess the capabilities of the proposed architecture the following experi-
ments are carried out.

Training on two different datasets:
To obtain information on how the architecture handles training data of varying quality
it is trained separately on the Blizzard and the LJ Speech dataset. Both models use the
same parameters as described in section 5.3.2.

• Section 6.1 examines the resulting Blizzard model.

• Section 6.2 examines the resulting LJ Speech model.

Analysis of the effects of different model components:
The effects of the post-processing stage, the spectrogram inversion process and the models
capability to predict attention alignments are examined.

• To assess the impact of the post-processing stage (see section 6.5) the LJ Speech
model is trained in a second configuration. Supplementary to the model with the
post-processing (as described in section 6.2) it is also trained without post-processing.
In the later case the decoder still produces a mel scale spectrogram which is trans-
formed to linear scale using a fully-connected layer.

• The attention alignments and the spectrogram inversion process are examined using
the Blizzard model (section 6.1) and the LJ Speech model (section 6.2) described
initially. Particularly the capability to predict continuous alignments (section 6.1.1)
and the effects of raising the spectrogram magnitudes to a power (section 6.6) are
examined.

Analysis of the effects of different amounts of target features:
The influence of the decoder target frame size on the models training capability is analyzed
(see section 6.4). Supplementary to the Blizzard model that uses 80 mel bands (section 6.1)
four additional models are trained using 20, 40, 120 and 160 mel bands. Otherwise, all
models share the same parameters as described in section 5.3.2.

Evaluation of the naturalness of the produced speech:
In order to rank the proposed architecture in contrast to other systems a MOS test is
conducted (see section 6.7). In the process the Blizzard model trained in section 6.1 is
compared against two other TTS systems.

36

6 RESULTS AND DISCUSSION

6 Results and Discussion

This section lists the results for the experiments described in section 5.3.3. All results are
followed by separate discussions, interpreting the findings. Each result is derived from a
single training run, thus there is no measure of error available for the collected data.

6.1 Blizzard Model Training

6.1.1 Results

Figure 17a depicts the progression of the total loss `t during training. For completeness
figure 17c and figure 17d show the decoder loss `d and the post-processing loss `p. The
Blizzard model is trained for 520,000 steps over a total computation duration of 28 days
and 13 hours. Every 5,000 batches the model is evaluated on the validation portion of the
dataset (see figure 17b). Progression of the predicted attention alignments is illustrated in
figure 16. The alignments are predicted during inference for different amounts of training.
Also, the model does not experience exploding-gradients during training. Experimental
development models trained without gradient-clipping suffered from gradient-explosions.

0 50 100
Decoder states

0

20

40

60

80

E
n

co
d

er
st

at
es

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(a) Predicted alignments for all decoder states
after 11,500 training steps.

0 50 100
Decoder states

0

20

40

60

80

E
n

co
d

er
st

at
es

0.05

0.10

0.15

0.20

0.25

(b) Predicted alignments for all decoder states
after 13,000 training steps.

0 50 100
Decoder states

0

20

40

60

80

E
n

co
d

er
st

at
es

0.1

0.2

0.3

0.4

0.5

(c) Predicted alignments for all decoder states
after 14,000 training steps.

0 50 100
Decoder states

0

20

40

60

80

E
n

co
d

er
st

at
es

0.0

0.2

0.4

0.6

0.8

(d) Predicted alignments for all decoder states
after 15,000 training steps.

Figure 16: Progression of the attention alignment during inference. Each encoder state
corresponds to a character of the input sentence. All alignments are generated for the same
randomly chosen utterance using the Blizzard model. Note that the alignments in each
column sum up to 1 as they are a probability distribution over the encoder states. This
does also hold true for the alignments produced after 15,000 steps.

37

6
R
E
SU

LT
S
A
N
D

D
ISC

U
SSIO

N

0k 100k 200k 300k 400k 500k
Steps

0.05

0.07
0.08

0.10

0.15

L
os

s

train `t
avg. train `t

(a) Progression of the total loss (`t) during training on the Blizzard dataset.

0k 100k 200k 300k 400k 500k
Steps

0.20

0.21

0.22

0.25

0.30

L
os

s

evaluate `t

(b) Progression of the total loss (`t) during evaluation on the Blizzard dataset.
The first 15,000 steps are truncated for better scaling.

0k 100k 200k 300k 400k 500k
Steps

0.02

0.03

0.04

0.08

L
os

s

train `d
avg. train `d

(c) Progression of the decoder loss (`d) during training on the Blizzard dataset.

0k 100k 200k 300k 400k 500k
Steps

0.02

0.03

0.04

0.06

L
os

s

train `p

avg. train `p

(d) Progression of the post-processing loss (`p) during training on the Blizzard
dataset.

Figure 17: Progression of the models losses during training and evaluation on the Blizzard dataset. The training losses are plotted every 50 steps
and the evaluation losses every 5,000 steps. A moving average is calculated for all training losses using a window width of 50 and a stride of 1. The
average is only calculated when the window completely overlaps with the signal. Note that the total training loss is smaller than the evaluation loss.

38

6 RESULTS AND DISCUSSION

6.1.2 Discussion

The training of the Blizzard model seems successful. It can be observed from figure 17 that
more training is generally positive for the synthesized result. After initialization, the total
loss during training seems to decrease until around 300,000 to 350,000 steps are reached.
Beyond that the model barely progresses further in terms of training loss. Note that the
training loss is substantially smaller than the evaluation loss. This is probably due to the
feeding of ground-truth frames during training. Subjective listening on a sample basis sug-
gest that extended training periods still achieve marginal improvements. The evaluation
loss, which decreases until 420,000 steps seems to correspond with this observation. A
potential explanation might be that the used loss metric is not capable of capturing all
nuances of the human voice. For example the pace at which to speak can not directly
be derived from the entered text, there are small inhomogeneous translations and varying
pauses that are not captured correctly. This is also supported by the analysis of the post-
processing stage (section 6.5), showing inhomogeneous pauses in the spectrogram for the
same input text.

Manual inspection of the alignments during evaluation suggests, that there are no cases
of endless repetition at the end of generated speech. This might be attributed to not mask-
ing padding frames during training. As mentioned above there is no information on the
pace a sentence is spoken or for how long the model has to produce frames. The model is
required to derive this from the training data and decide on its own when to stop gener-
ating speech. That implies that the more homogeneous the speech and the less variation
there is the better the model might be at fitting the data.

The alignments are learned from the beginning of the encoder sequences and “grow” co-
herently without temporal jumps. While they can be predicted early (after around 15,000

steps), at this point during inference they are not particularly robust. However, as train-
ing progresses the alignment prediction gets more stable. Note that the losses decrease
rapidly until the model is capable of predicting the first coherent attention alignments for
the whole sequence.

The evaluation procedure shows no indication of overfitting. This can be observed
in figure 17, with the evaluation loss converging throughout the entire process without
starting to diverge from the training loss. This is likely due to the high dropout rates
used in all the pre-net layers. After the implementation of gradient-clipping, the exploding
gradient problem did not occur again. Hence, indicating that the gradient-clipping strategy
successfully prevents it.

6.2 LJ Speech Model Training

6.2.1 Results

Figure 18a depicts the progression of the total loss `t during training. For completeness
figure 18c and figure 18d show the decoder loss `d and the post-processing loss `p. The
LJ Speech model is trained for 505,000 steps over a total computation duration of 5 days
and 2 hours. Every 5,000 batches the model is evaluated on the validation portion of the
dataset as shown in figure 18b. For brevity visualization of the alignments is omitted.

39

6
R
E
SU

LT
S
A
N
D

D
ISC

U
SSIO

N

0k 100k 200k 300k 400k 500k
Steps

0.05

0.07
0.08

0.10

0.15

L
os

s

train `t
avg. train `t

(a) Progression of the total loss (`t) during training on LJ Speech.

0k 100k 200k 300k 400k 500k
Steps

0.20

0.23
0.24

0.30

0.35

0.40

L
os

s

evaluate `t

(b) Progression of the total loss (`t) during evaluation on the LJ Speech dataset.

0k 100k 200k 300k 400k 500k
Steps

0.02

0.03

0.04

0.08

L
os

s

train `d
avg. train `d

(c) Progression of the decoder loss (`d) during training on LJ Speech.

0k 100k 200k 300k 400k 500k
Steps

0.02

0.03

0.04

0.06

L
os

s

train `p

avg. train `p

(d) Progression of the post-processing loss (`p) during training on LJ Speech.

Figure 18: Progression of the model’s losses during training and evaluation on the LJ Speech dataset. The training losses are plotted every 50 steps
and the evaluation losses every 5,000 steps. A moving average is calculated for all training plots using a window width of 50 and a stride of 1. The
average is only calculated when the window completely overlaps with the signal. Note that the total training loss is smaller than the evaluation loss.

40

6 RESULTS AND DISCUSSION

6.2.2 Discussion

It can be observed from figure 18 that the model seems to converge fairly early in training.
After around 60,000 steps, barely any progression both in terms of total training loss can
be observed. The same seems to hold true for the evaluation loss, albeit it still exhibits
noticeable variance. Note that the evaluation loss experiences a surge at around 220,000

steps. While this surge is temporary and vanishes 100,000 steps later, the model does not
improve any further. Due to this increase vanishing again it seems the model does not
experience any long term overfitting. Note that when compared to the Blizzard model, the
main difference in absolute runtime is because the models are trained on different hard-
ware. This can also partially be attributed to the difference in file durations’ between the
used datasets as shown in appendix section B.

Listening to results on a per sample basis reveals that although intelligible voice is
generated the LJ Speech model appears to generate more perceivable noise compared to
the Blizzard model. Examining random samples from the dataset one can notice that the
ground-truth audio waveforms from the LJ Speech dataset contain low background noise
themselves. Also, as described in section 5.2.1 removal of the of non constant duration
silence in the recordings might not have worked in all cases. While the model is capable
of producing comprehensible speech, the reasons mentioned above seem to preventing it
from producing a low-noise signal. Nevertheless, the model is still able to learn to predict
attention alignments after around 15,000 steps. It is also able to predict when it has finished
a sentence and hence has to stop producing speech. Therefore, it is able to derive a general
temporal structure. Note however, that the evaluation loss barely progresses any further
once the model learned to produce continuous attention alignments. That might indicate
that the model is restrained by the decoder, not the encoder or the attention mechanism in
general. The fact that the model is still capable of training and producing speech may be
attributed to the feeding of ground-truth frames during training. This would also explain
why attention alignments can be learned, while the decoder possibly has trouble fitting
the data.

Ultimately, based on this individual run, it can not be excluded that the behavior might
partially be caused by poor weight initialization or unsuitable hyper-parameters.

6.3 General Training Discussion

Although trained on different data, the models described above are comparable as in both
cases the loss is calculated using normalized spectrograms. Comparing the evaluation loss
between both models makes the early progression of the LJ Speech model particularly
apparent. It can be observed, that while the Blizzard model is trained on less material (∼7

hours less), it is able to achieve a better evaluation error (figure 17). Based on the training
loss, the progress can barely be observed in either case. This is certainly due to the feeding
of ground-truth frames during training. Subsequent spectrogram frames are expected to
have a high correlation. Therefore, the fed frames have a strong influence on the loss when
predicting r frames with each iteration. Both models learn to predict attention alignments
at the same pace. This is most likely also due to the feeding of ground-truth frames during
training. As it allows the architecture to learn right from the start, limiting the effect of
defective outputs from the encoder. In turn the decoder likewise can produce outputs that
the post-processing can learn from; even in the early stages of training.

41

6 RESULTS AND DISCUSSION

6.4 Feature Size

To assess the impact of the number of mel filter banks multiple models with 20, 40, 80,
120, 160 banks are compared. The model using 80 banks is equal to the model described
in section 6.1.

6.4.1 Results

Additional models using 20, 40, 120, 160 banks are trained for 200,000 iterations each.
The total computation time for these four models combined is 6 days. Figure 19 and
figure 20 shows the influence of the number of mel banks on the decoder loss during
training. Figure 20 illustrates the influence on the post-processing loss. The effect of the
number of banks on the total evaluation loss can be seen in figure 21.

6.4.2 Discussion

One might generally expect a better result using more banks as the spectrogram gets more
detailed. However, increasing the number of banks lead to an increase in total loss during
training, while reducing the number of banks reduces the total loss. As can be seen in
figure 19 while the decoder loss reduces, the post-processing loss shown in figure 20 re-
mains overall consistent. The uniform evaluation losses from figure 21 confirm that the
post-processing loss remains consistent. This implies, that predicting the post-processing
target does not suffer from the reduced decoder target size. But it also indicates, that the
architecture has difficulties predicting a decoder target with increasing size. Hence, either
the number of parameters in the decoder RNN cell has to increase to better capture the in-
creased decoder target. Or another way of transforming mel into linear scale spectrograms
has to be devised to reduce the post-processing loss.

6.5 Post-Processing

6.5.1 Results

The LJ Speech model without post-processing is trained for exactly the same number of
steps as the version with it (see section 6.2). The difference between predicting the linear
scale spectrogram with and without the post-processing network can be seen in figure 22a
and figure 22b.

6.5.2 Discussion

The results from training the proposed model with and without the post-processing stage
reveals that it is an important component of the model. It apparently contributes finer
details to higher frequencies most notably in the range of 1,000 Hz to 4,000 Hz. Neverthe-
less, post-processing further contributes to improving the result by repairing artifacts and
non-continuities in the linear spectrogram. Condensing multiple frames during decoding
using the reduction factor, efficiently reduces the number of decoder steps required. How-
ever, a side effect are artifacts introduced between the transitions of the condensed frame
groups can be seen in figure 22a. Figure 22b shows, that such artifacts are fixed or at least
moderated by the post-processing stage.

42

6 RESULTS AND DISCUSSION

25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.02

0.03

0.04

0.05

0.06

0.07

L
os

s

train `d (160-mels)

avg. train `d (160-mels)

train `d (120-mels)

avg. train `d (120-mels)

train `d (80-mels)

avg. train `d (80-mels)

train `d (40-mels)

avg. train `d (40-mels)

train `d (20-mels)

avg. train `d (20-mels)

Figure 19: Progression of the decoder loss during training for models using different
amounts of mel banks as the decoder target. All models are trained on the Blizzard
dataset and the losses are plotted every 50 steps. A moving average is calculated for all
training plots using a window width of 50 and a stride of 1. The average is only calculated
when the window completely overlaps with the signal. For better scaling the first 1,000
steps are omitted.

43

6 RESULTS AND DISCUSSION

25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.02

0.03

0.04

0.05

0.06

0.07

L
os

s

train `p (160-mels)

avg. train `p (160-mels)

train `p (120-mels)

avg. train `p (120-mels)

train `p (80-mels)

avg. train `p (80-mels)

train `p (40-mels)

avg. train `p (40-mels)

train `p (20-mels)

avg. train `p (20-mels)

Figure 20: Progression of the post-processing loss during training for models using different
amounts of mel banks as the decoder target. All models are trained on the Blizzard dataset
and the losses are plotted every 50 steps. A moving average is calculated for all training
plots using a window width of 50 and a stride of 1. The average is only calculated when
the window completely overlaps with the signal. For better scaling the first 1,000 steps are
omitted.

44

6 RESULTS AND DISCUSSION

25000 50000 75000 100000 125000 150000 175000 200000
Steps

1.9× 10−1

2.2× 10−1

2.5× 10−1

2× 10−1

3× 10−1

4× 10−1

L
os

s
evaluate `t (160-mels)

evaluate `t (120-mels)

evaluate `t (80-mels)

evaluate `t (40-mels)

evaluate `t (20-mels)

Figure 21: Progression of the total evaluation loss for models using different amounts of
mel banks as the decoder target. The losses are plotted every 5,000 steps. The first 10,000
steps are skipped for better scaling.

0 0.5 1 1.5
Time (s)

0

2

4

6

8

10

kH
z

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

(a) Linear scale magnitude spectrogram
without the post-processing applied.

0 0.5 1 1.5
Time (s)

0

2

4

6

8

10

kH
z

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

(b) Linear scale magnitude spectrogram with
the post-processing applied.

Figure 22: Comparison of the predicted linear scale spectrogram with and without the
post-processing network applied. Both spectrograms are generated by separate models
trained on the LJ Speech dataset for an utterance selected randomly from the test portion.

45

6 RESULTS AND DISCUSSION

0 0.5 1 1.5
Time (s)

0

2

4

6

8
k
H

z

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

(a) Linear scale magnitude spectrogram
without modification of the magnitudes.

0 0.5 1 1.5
Time (s)

0

2

4

6

8

k
H

z

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

+20 dB

+40 dB

(b) Linear scale magnitude spectrogram with
the magnitudes raised to the power of 1.3.

Figure 23: Effect of raising the linear scale magnitude spectrogram to a power of 1.3. Using
a part of the utterance “sometimes downright disastrous, decisions.” (APDC2-008-03) from
the Blizzard dataset as an example. Raising the magnitudes does effectively sharpen the
spectrogram, dampening homogeneous noisy areas.

Observe that there is a noticeable translation in timing and variation in the pauses
produced. To a certain degree this behavior is expected as the timing and overall duration
are derived from plain text.

6.6 Spectrogram Inversion

Prior to synthesis using Griffin-Lim the magnitudes of the linear scale spectrogram are
raised to the power of 1.3.

6.6.1 Results

Figure 23 illustrates the effect of raising the linear scale magnitude spectrogram to a power.
With an increasing power one can observe that the higher frequency components vanish.
Also, homogeneous low power regions in the spectrogram are scaled down.

6.6.2 Discussion

Subjective listening tests on individual files during training indicates, that this sharpening
of the spectrogram effectively dampens noise. While, the spectrogram gets “sharpened”
with an increasing power, the higher frequency components also tend to vanish. This
appears to lead to a muffled and overall dampened voice that subjectively sound unclear.
Note that the exponent 1.3 is chosen based on testing and might be selected different for
each dataset for the best results.

As indicated by figure 14b this processing stage is particularly demanding. While
improvements to the algorithm are possible, computation time spend in this stage is sub-
stantially higher than that spend in the prior stages combined.

46

6 RESULTS AND DISCUSSION

laptop desktop in-ear over-the-ear

Device

0

1

2

3

4

5

C
ou

n
t

Figure 24: Distribution of the playback devices used in the survey. Before the participants
hear samples, their playback configuration is queried from a list of four categories. While
participants are encouraged to use headphones, it is not required for attending. A total of
11 participants attended the survey.

6.7 Evaluation Survey

In order to rank the proposed architecture in contrast to other systems an evaluation sur-
vey is conducted. It aims to compare the quality of different TTS systems to get an idea
of how the proposed system relates. It is not supposed to be a statistically representative
evaluation.

The model’s performance is evaluated using a paired comparison MOS test in combination
with a hypothesis test at a significance level of α = 0.05. For more details on the survey
design and implementation and the chosen null hypothesis refer to appendix section A.

6.7.1 Results

In total 11 participants of age 21 to 38 attend the survey. Out of these, 1 participant
is female and 10 are male. All listeners are native German speakers from the domain
of computer science. The subjects are presented pairs of audio files containing the same
utterance generated by the proposed architecture and two other TTS systems. The subjects
are asked to rate the naturalness of each file using a 5-point MOS. The order in which the
models are presented is altered randomly with each sentence.
Namely, MaryTTS [54] (unit-selection) and the Merlin system [55] (statistical-parametric)
are used as reference systems. All models are trained on the same English sentences from
the Blizzard dataset (see section 5.2) to maximize comparability. Six attendants used
headphones and five attendants used either laptop or desktop speakers. See figure 24 for a
detailed visualization of the distribution of playback devices. Table 3 lists the calculated
MOSs and the sample standard deviations. Refer to figure 25 for a visualization of the
scores. Table 4 lists the test statistics and the p-values for both reference models in
comparison to the proposed model.

47

6 RESULTS AND DISCUSSION

Table 3: Results of the 5-point mean opinion score evaluation. Listed are the arithmetic
mean MOSs (µ̂a) and the uncorrected and corrected sample standard deviations (σ̂a,∆).
All values are rounded to one decimal place.

Model (a) MOS (µ̂a) STD (σ̂a,0) STD (σ̂a,1)

MaryTTS 2.0 0.9 0.9
Merlin 3.3 0.8 0.8
Proposed 3.4 1.0 1.0

MaryTTS
(unit-selection)

Merlin
(statistical-parametric)

Proposed

Model

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
O

S

Figure 25: Results of the 5-point mean opinion score evaluation. The orange line depicts
the median of the corresponding model ratings, while the green dashed line depicts the
arithmetic mean. The lower box boundary illustrates the first quartile and the upper bound
the third quartile. The black dashed whisker lines indicated the minimum and maximum
ratings.

Table 4: Results for test statistics tr,∆ and the p-values for the reference systems using
different delta degrees of freedom. All values are rounded to two decimal places.

Model (r) tr,0 tr,1 pr,0 pr,1

MaryTTS −23.91 −23.89 0.00 0.00
Merlin −0.58 −0.57 0.56 0.57

Table 5: Calculated confidence intervals confa,∆ for all models. All values are rounded to
one decimal place.

Model (a) confa,0 confa,1

MaryTTS (1.9, 2.1) (1.9, 2.1)
Merlin (3.3, 3.4) (3.3, 3.4)
Proposed (3.3, 3.4) (3.3, 3.4)

48

6 RESULTS AND DISCUSSION

6.7.2 Discussion

Let’s contemplate the underlying null hypothesis devised in section A.1.3:

There is no significant difference between the MOS from the reference models
and that of the proposed model.

Table 4 lists the test statistics and the p-values for both reference models in comparison
to the proposed model. Note that the influence of delta degrees of freedom ∆ is negligible
for the decision on the null hypothesis. Considering the p-value for ∆ = 0 of the MaryTTS
model, the null hypothesis H0 has to be rejected (0.00 ≤ 0.05). Consequently, there exists
a significant difference in terms of MOS between the MaryTTS and the proposed model
at the α = 0.05 level. However, when considering the p-value for ∆ = 0 of the Merlin
model, rejecting the null hypothesis H0 fails (0.56 > 0.05). Consequently, there exists no
significant difference in terms of MOS between the Merlin and the proposed model at the
α = 0.05 level.

Using participants that are not native speakers may result in slightly better scores.
The attendants might not be capable of distinguishing and discriminating small errors in
the speech as well as a native speaker could.

For evaluation 50 sentences not contained in the training dataset are used. Therefore,
the scores are not normalized against ground-truth recordings from the dataset. For the
calculation of the final scores all ratings are used, independent of the playback device used.
As described in [56], participants using loudspeakers generally have smaller discrimination
capacity than users wearing headphones. However, one cannot require participants to
always wear headphones, especially in an environment like an online survey.

With ten males to one female, the male participants are over-represented in the collected
data. Hence, the random sampling assumptions made in section A.2.2 for the hypothesis
test are not optimal. Compensating for this discrepancy by weighting the data based on
gender is renounced. It is presumed that the data is sufficient to relate the models against
each other.

Considering the achieved scores one can notice the unit-selection (MaryTTS) system
performs poorly compared to the other systems. This may be due to the training data not
containing enough material to always find matching snippets for concatenation.

49

7 CONCLUSIONS

7 Conclusions

Traditional speech generation approaches are based on complex multi-stage pipelines. Of-
ten modeling a multitude of properties of written and spoken language as well as their
interplay (section 1.3). Neural generative speech synthesis models and the originating pos-
sibility of end-to-end fashion model training might simplify the creation of TTS systems.

7.1 Summary

The objective of this work is to implement and evaluate a neural voice synthesis solution
that is inspired by current state-of-the-art architectures. Capable of training from un-
aligned text-audio-pairs in an end-to-end fashion, making little assumptions on the data.

In order to be able to classify the proposed architecture, a general understanding of
common TTS systems and their structure is established. To understand the system itself
a basic knowledge of the underlying neural technologies is established. Before introduc-
ing the architecture a brief overview of related work is presented, focusing primarily on
recent neural TTS systems. The proposed model is directly derived from the Tacotron [1]
architecture. It can be trained in an end-to-end fashion from unaligned text-audio-pairs
without the need for supplementary alignment or duration models. It is composed of a
separate encoder, decoder, post-processing and a synthesis stage. These abstract stages are
decomposed into smaller components that are introduced separately. Using them as build-
ing blocks for the more complex stages. The encoder transforms written text into variable
length embeddings. The subsequent decoder evaluates these embeddings using the Luong
attention mechanism. With each decoding iteration it produces multiple non-overlapping
MSMSPEC frames. The decoded MSMSPEC is improved by the neural post-processing
stage, converted to linear scale and turned into a waveform using the Griffin-Lim algorithm.

Different models of the same architecture are trained on two different freely available
English datasets. Each dataset consists of unaligned text-audio-pairs of different quantity
and quality. The capabilities and components of the resulting models are analyzed and
evaluated. A paired comparison test using human listeners is conducted to evaluate the
naturalness of the produced speech on a 5-point MOS scale. The proposed system is com-
pared against two publicly available TTS systems namely MaryTTS (unit-selection) and
Merlin (statistical-parametric). The MaryTTS model scores 2.0, the Merlin model scores
3.3 and the proposed system achieves 3.4, on average. A paired difference hypothesis test
shows that The Merlin show no significant difference in terms of MOS at a significance
level of α = 0.05. Demonstrating that the proposed architecture is capable to train in an
end-to-end fashion and is able to produce comprehensible speech. In the process predicting
robust and precise attention alignments using the implemented Luong attention mecha-
nism.

Investigations on the models components are carried out. Endless repetition at the
end of sentences can efficiently be prevented by not masking padding when calculating the
loss. During decoding particularly the feeding of the ground-truth frames seems to help
the models to train. Therefore, enabling the decoder to train right from the start when
even the encoder or the post-processing are still unable to fit the data. Combined with
the reduction factor reducing the number of decoder steps required, the models are able to

50

7 CONCLUSIONS

reliably predict long sequences. Visualizing the effect of the post-processing stage clarified
that it is essential for improving the resolution of higher frequencies in the produced spec-
trogram. Raising the predicted linear scale spectrogram to a power helps to remove noise
and improves the perceived quality. With increasing power, higher frequencies vanish and
the result can be perceived as muffled. The results suggest, that it is not primarily the
amount of data that is vital. Rather, the overall quality of the data is crucial. Especially
a neutral voice, homogeneous speaking rate as well as no random silence at the beginning
of the waveforms are important.

Furthermore, the model behavior for different amounts of mel filter banks generated
with each decoder iteration is analyzed. Using a more detailed mel spectrogram for train-
ing, one might anticipate a better result. However, increasing the number of banks leads
to an increase in loss, while reducing the number of banks reduces the loss. While the
decoder loss reduces, the post-processing loss remains consistent. Implying that predicting
the post-processing target does not suffer from the reduced decoder target size. Hence,
either the number of parameters in the decoder RNN cells has to increase, or another way
of transforming mel spectrograms into linear scale spectrograms has to be devised.

7.2 Limitations And Practical Implications

Despite the models accomplishments this architecture has several limitations. The model
is not capable of producing speech at a pace that could be considered real time. While
the neural stages are capable of doing so it is primarily the computational cost of the
Griffin-Lim synthesis approach preventing this. The used loss function is suitable for
training, however, in the advanced stages of training it seems unable to capture the models
progress. Hence, it is probably unable to capture all the nuances of the generated voice.
For example there are small displacements and pauses that the loss does not account for.
Further more, while the end-to-end fashion training produces working models capable of
producing speech, it lacks direct control mechanisms to influence the result. Properties
like pronunciation, emotion or the talking speed for example are solely approximated from
the training data used.

Nevertheless, the results clearly show that a system like this enables the generation
of high quality speech even without extensive domain knowledge or huge datasets. Mak-
ing the creation of such systems less complex could lead to general improvements in the
quality and availability of TTS solutions. That might have implications in all kinds of cur-
rently available TTS systems. Particularly synthesis solutions that do not require powerful
hardware or an active internet connection might become feasible. Allowing the creation
of more complex, interactively reacting content in the entertainment sector. For example
video games might increase immersion by individually reacting on the users actions. Hav-
ing systems that can be trained on little data with all kinds of speech might also make
rebuilding of voices possible. Benefiting the creation of high quality personalized voices for
patients who have lost their voice due to medical conditions requiring tracheostomy20 for
example.

20Surgical procedure that allows a person to breathe without the use of the nose or mouth:
https://en.wikipedia.org/wiki/Tracheotomy

51

https://en.wikipedia.org/wiki/Tracheotomy

7 CONCLUSIONS

7.3 Future Work

The proposed architecture is directly derived from Tacotron [1], which in turn directly
influenced the development of current state-of-the-art architectures [39, 40]. As such, the
current implementation can be extended to recreate these more sophisticated neural archi-
tectures. This in turn facilitates the exploration of applications like multi-speaker gener-
ation, active prosody modeling, improved neural vocoders, voice conversion and modeling
of emotions.

Considering the lack of control over the generated result with the current architecture
it is desirable to have the possibility to actively model prosody. Most synthetic voices
produce voice with a neural style of speaking, having more control over the prosody might
improve the naturalness and expressiveness. This might also help produce more consistent
pauses and timing such that the speech is better captured by the current loss function.

Likewise, of interest might be the model’s dependency on data from a single speaker as
there are only limited amounts of data available. It would be desirable to develop an archi-
tecture that is capable of training from data of multiple speakers. Ideally complementing
each other, while being able to produce voice for each of the individual speaker.

Note that an approach capable of capturing the characteristics of multiple speakers
might also be utilized to transform speech between the characteristics of different speak-
ers. This could allow one to take language from one speaker and transform it, so that it
sounds like another. In turn being able to capture such characteristics might also allow
the modeling of emotional speech.

Apart from the application of the concept to other problems, there are other refine-
ments that can be addressed in the current architecture. As mentioned above, its primary
limitation is the Griffin-Lim based synthesis stage. Replacing it with a neural vocoder like
WaveNet [36] as demonstrated in Tacotron 2 [39] could improve the results. Besides the
vocoder, exploring the potential of other features and in turn loss functions might be bene-
ficial. Promising alternative features to explore are Mel-cepstral coefficients (MCEPs) [57]
and Mel-frequency cepstral coefficients (MFCCs) [58]. As shown by the results in section
section 6, the loss function seems to be unable to capture all nuances of the produced voice.
Alternative loss functions to explore might be per frame Mel-cepstral distortion (MCD)
or Modulation Spectrum Log-Spectral Distortion (MS-LSD) [59]. Further, exploring the
effects of using different reduction factors might be beneficial. As there is a trade-off be-
tween shorter sequences with an increasing amount of artifacts and longer sequences with
fewer artifacts. Fine-tuning of a model trained on one speaker to another is also worth
investigating as it might allow deriving models in shorter time with less material.

Acknowledgments

The author conveys his tanks to Jürgen te Vrugt and Nikolaus Wulff for their constructive
feedback and words of advice. Furthermore, he would like to express his acknowledgment
to Markus Gilbert and Kathrin Ungru for the cooperation and assistance with the resources
of the Steinfurt Campus Cluster (SCC) and the continuous support with the hardware.
The author would also like to thank Marc Dangschat for his insightful comments and the
fruitful discussions.

52

LIST OF TABLES

List of Figures

1 Outline of the models processing stages . 1
2 Overview of the primary synthesis technologies 4
3 Visualization of the human vocal mechanism 5
4 Schematic layout of a conventional Text-to-Speech system 6
5 Illustration of a discrete 2-D convolution . 9
6 Layout of a generic sequence-to-sequence architecture 11
7 Visualization of the character embedding lookup 13
8 Schematic diagram of a CBHG module . 19
9 Schematic diagram of the CBHG filter bank module 21
10 Global Luong attention mechanism . 22
11 Schematic diagram of the proposed model architecture 26
12 Schematic diagrams of the encoder and the decoder stages 26
13 Schematic diagram of the decoder stage . 28
14 Reconstruction error and computation time of the Griffin-Lim algorithm. . 30
15 Visualization of linear and mel scale magnitude spectrograms 33
16 Progression of the attention alignments . 37
17 Progression of the Blizzard model’s losses during training and evaluation . . 38
18 Progression of the LJ Speech models losses during training and evaluation . 40
19 Influence of different amounts of mel banks on the decoder loss 43
20 Influence of different amounts of mel banks on the post-processing loss . . . 44
21 Influence of different amounts of mel banks on the total evaluation loss . . . 45
22 Effects of post-processing on the linear scale spectrogram 45
23 Effect of raising the linear scale magnitude spectrogram to a power 46
24 Distribution of the playback devices used in the survey 47
25 Results of the 5-point mean opinion score evaluation 48
26 Distribution of the file durations in the used corpora 64

List of Tables

1 Datasets used by other single speaker Text-to-Speech models 31
2 Hyper-parameters of the proposed model architecture 35
3 Results of the 5-point mean opinion score evaluation 48
4 Model Hypothesis Test Results . 48
5 Model Confidence Intervals . 48
6 5-point Mean Opinion Score scale . 61
7 Statistics for the Blizzard Nancy and the LJ Speech dataset 65

53

REFERENCES

References

[1] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang, Y.
Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous,
“Tacotron: Towards End-to-End Speech Synthesis”, Mar. 2017. arXiv: 1703.10135.
[Online]. Available: https://arxiv.org/abs/1703.10135.

[2] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training Recurrent
Neural Networks”, Feb. 2013. arXiv: 1211.5063v2. [Online]. Available: https://
arxiv.org/abs/1211.5063v2.

[3] P. Taylor, Text-to-Speech Synthesis, 1st. Cambridge University Press, 2009, p. 626,
isbn: 9780511816338. doi: 10.1017/CBO9780511816338. [Online]. Available: http:
//ebooks.cambridge.org/ref/id/CBO9780511816338.

[4] R. Kaur, R. K. Sharma, and P. Kumar, “Building a Text-to-Speech System For
Punjabi Language”, IT-CSCP 2017, vol. 7, pp. 71–87, 2017. doi: 10.5121/csit.
2017.70806. [Online]. Available: https://airccj.org/CSCP/vol7/csit77006.pdf.

[5] M. H. O’Malley, “Text-to-speech conversion technology”, Computer, vol. 23, no. 8,
pp. 17–23, Aug. 1990, issn: 0018-9162. doi: 10.1109/2.56867. [Online]. Available:
https://ieeexplore.ieee.org/document/56867/.

[6] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A Critical Review of Recurrent Neural
Networks for Sequence Learning”, Oct. 2015. arXiv: 1506.00019v4. [Online]. Avail-
able: https://arxiv.org/abs/1506.00019v4.

[7] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and
Y. Bengio, “Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention”, Apr. 2016. arXiv: 1502.03044v3. [Online]. Available: https://arxiv.
org/abs/1502.03044v3.

[8] M. Han, O. Wu, and Z. Niu, “Unsupervised Automatic Text Style Transfer using
LSTM”, in 6th CCF International Conference, NLPCC 2017, X. Huang, J. Jiang, D.
Zhao, Y. Feng, and Y. Hong, Eds., Beijing Institute of Technology, Dalian, China:
Springer International Publishing AG, 2017, pp. 281–292. doi: 10.1007/978-3-
319-73618-1. [Online]. Available: http://tcci.ccf.org.cn/conference/2017/
papers/1135.pdf.

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks”, in Advances in Neural Information Processing Systems 27, Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., Cur-
ran Associates, Inc., 2014, pp. 3104–3112. arXiv: 1409.3215v3. [Online]. Available:
https://arxiv.org/abs/1409.3215v3.

[10] M.-T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-
based Neural Machine Translation”, Sep. 2015. arXiv: 1508.04025v5. [Online]. Avail-
able: https://arxiv.org/abs/1508.04025v5.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learn-
ing to Align and Translate”, ICLR 2015, 2016. arXiv: 1409.0473v7. [Online]. Avail-
able: https://arxiv.org/abs/1409.0473v7.

54

https://arxiv.org/abs/1703.10135
https://arxiv.org/abs/1703.10135
https://arxiv.org/abs/1211.5063v2
https://arxiv.org/abs/1211.5063v2
https://arxiv.org/abs/1211.5063v2
https://doi.org/10.1017/CBO9780511816338
http://ebooks.cambridge.org/ref/id/CBO9780511816338
http://ebooks.cambridge.org/ref/id/CBO9780511816338
https://doi.org/10.5121/csit.2017.70806
https://doi.org/10.5121/csit.2017.70806
https://airccj.org/CSCP/vol7/csit77006.pdf
https://doi.org/10.1109/2.56867
https://ieeexplore.ieee.org/document/56867/
https://arxiv.org/abs/1506.00019v4
https://arxiv.org/abs/1506.00019v4
https://arxiv.org/abs/1502.03044v3
https://arxiv.org/abs/1502.03044v3
https://arxiv.org/abs/1502.03044v3
https://doi.org/10.1007/978-3-319-73618-1
https://doi.org/10.1007/978-3-319-73618-1
http://tcci.ccf.org.cn/conference/2017/papers/1135.pdf
http://tcci.ccf.org.cn/conference/2017/papers/1135.pdf
https://arxiv.org/abs/1409.3215v3
https://arxiv.org/abs/1409.3215v3
https://arxiv.org/abs/1508.04025v5
https://arxiv.org/abs/1508.04025v5
https://arxiv.org/abs/1409.0473v7
https://arxiv.org/abs/1409.0473v7

REFERENCES

[12] J. Lee, K. Cho, and T. Hofmann, “Fully Character-Level Neural Machine Transla-
tion without Explicit Segmentation”, in Transactions of the Association for Com-
putational Linguistics, A. Lopez, Ed., vol. 5, Jun. 2017, pp. 365–378. arXiv: 1610.
03017v3. [Online]. Available: https://arxiv.org/abs/1610.03017v3.

[13] S. Kubrick, 2001: A Space Odyssey, 1968. [Online]. Available: https://www.imdb.
com/title/tt0062622/.

[14] G. Roddenberry, Star Trek, 1966. [Online]. Available: https://www.imdb.com/
title/tt0060028/?ref_=nv_sr_6.

[15] S. Hawking, The Computer - Stephen Hawking, 2017. [Online]. Available: http :
//www.hawking.org.uk/the-computer.html (visited on 06/25/2018).

[16] Apple Inc., iOS - Siri - Apple, 2011. [Online]. Available: https://www.apple.com/
ios/siri/ (visited on 06/25/2018).

[17] Google LLC., Google Assistant, 2016. [Online]. Available: https : / / assistant .
google.com/#?modal_active=none (visited on 06/25/2018).

[18] Amazon.com Inc., Amazon Echo, 2016. [Online]. Available: https://developer.
amazon.com/echo (visited on 06/25/2018).

[19] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and
Y. Bengio, “SampleRNN: An Unconditional End-to-End Neural Audio Generation
Model”, ICLR 2017, Feb. 2017. arXiv: 1612.07837v2. [Online]. Available: https:
//arxiv.org/abs/1612.07837v2.

[20] N. S. Krishna, P. P. Talukdar, K. Bali, and A. G. Ramakrishnan, “Duration Modeling
for Hindi Text-to-Speech Synthesis System”, in INTERSPEECH 2004, Jeju Island,
Korea, 2004, pp. 789–792. [Online]. Available: http : / / talukdar . net / papers /
icslp04_hpl.pdf.

[21] J. Sotelo, S. Mehri, K. Kumar, J. Santos, K. Kastner, A. Courville, and Y. Bengio,
“Char2Wav: End-to-End Speech Synthesis”, ICLR 2017 Workshop, 2017. [Online].
Available: https://openreview.net/pdf?id=B1VWyySKx.

[22] T. Dutoit, An Introduction to text-to-speech synthesis, 1999. [Online]. Available:
http://tcts.fpms.ac.be/synthesis/introtts_old.html (visited on 07/06/2018).

[23] D. H. Klatt, “Interaction between two factors that influence vowel duration”, The
Journal of the Acoustical Society of America, vol. 54, no. 4, pp. 1102–1104, 1973.
doi: 10.1121/1.1914322. [Online]. Available: http://asa.scitation.org/doi/
10.1121/1.1914322.

[24] A. W. Black, H. Zen, and K. Tokuda, “Statistical Parametric Speech Synthesis”,
2007 IEEE International Conference on Acoustics, Speech and Signal Processing -
ICASSP ’07, vol. 4, pp. 1229–1232, 2007. doi: 10.1109/ICASSP.2007.367298.

[25] M. Dangschat, End-To-End Speech Recognition Using Connectionist Temporal Clas-
sification, 2018.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. [Online].
Available: http://www.deeplearningbook.org.

55

https://arxiv.org/abs/1610.03017v3
https://arxiv.org/abs/1610.03017v3
https://arxiv.org/abs/1610.03017v3
https://www.imdb.com/title/tt0062622/
https://www.imdb.com/title/tt0062622/
https://www.imdb.com/title/tt0060028/?ref_=nv_sr_6
https://www.imdb.com/title/tt0060028/?ref_=nv_sr_6
http://www.hawking.org.uk/the-computer.html
http://www.hawking.org.uk/the-computer.html
https://www.apple.com/ios/siri/
https://www.apple.com/ios/siri/
https://assistant.google.com/#?modal_active=none
https://assistant.google.com/#?modal_active=none
https://developer.amazon.com/echo
https://developer.amazon.com/echo
https://arxiv.org/abs/1612.07837v2
https://arxiv.org/abs/1612.07837v2
https://arxiv.org/abs/1612.07837v2
http://talukdar.net/papers/icslp04_hpl.pdf
http://talukdar.net/papers/icslp04_hpl.pdf
https://openreview.net/pdf?id=B1VWyySKx
http://tcts.fpms.ac.be/synthesis/introtts_old.html
https://doi.org/10.1121/1.1914322
http://asa.scitation.org/doi/10.1121/1.1914322
http://asa.scitation.org/doi/10.1121/1.1914322
https://doi.org/10.1109/ICASSP.2007.367298
http://www.deeplearningbook.org

REFERENCES

[27] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation”, in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1724–1734. arXiv: 1406.1078v3. [Online].
Available: https://arxiv.org/abs/1406.1078v3.

[28] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997, issn: 0899-7667. doi: 10.1162/neco.1997.9.8.
1735. [Online]. Available: https://ieeexplore.ieee.org/document/6795963/.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”, in 2015 IEEE International
Conference on Computer Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 1026–1034.
doi: 10.1109/ICCV.2015.123.

[30] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift”, in Proceedings of the 32nd International Con-
ference on Machine Learning, F. Bach and D. Blei, Eds., vol. 37, Lille, France: PMLR,
2015, pp. 448–456. arXiv: 1502.03167v1. [Online]. Available: http://proceedings.
mlr.press/v37/ioffe15.pdf.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting”, Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html.

[32] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura, “Simultane-
ous Modeling Of Spectrum, Pitch And Duration In HMM-Based Speech Synthesis”,
in EUROSPEECH’99, Budapest, Hungary, 1999, pp. 2347–2350. [Online]. Available:
https://www.isca-speech.org/archive/archive_papers/eurospeech_1999/
e99_2347.pdf.

[33] D. H. Klatt, “Review of text-to-speech conversion for English”, The Journal of the
Acoustical Society of America, vol. 82, no. 3, pp. 737–793, Sep. 1987, issn: 0001-4966.
doi: 10.1121/1.395275. [Online]. Available: https://doi.org/10.1121/1.395275.

[34] A. J. Hunt and A. W. Black, “Unit selection in a concatenative speech synthesis
system using a large speech database”, in 1996 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, Atlanta, GA, USA: IEEE,
1996, pp. 373–376. doi: 10.1109/ICASSP.1996.541110.

[35] A. W. Black, “Unit Selection and Emotional Speech”, in EUROSPEECH 2003,
Geneva, Switzerland: ISCA, 2003, pp. 1649–1652.

[36] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A Generative Model for
Raw Audio”, Sep. 2016. arXiv: 1609.03499v2. [Online]. Available: https://arxiv.
org/abs/1609.03499v2.

[37] S. Ö. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang, X.
Li, J. Miller, A. Ng, J. Raiman, S. Sengupta, and M. Shoeybi, “Deep Voice: Real-
time Neural Text-to-Speech”, in Proceedings of the 34th International Conference
on Machine Learning, D. Precup and Y. W. Teh, Eds., vol. 70, PMLR, Aug. 2017,

56

https://arxiv.org/abs/1406.1078v3
https://arxiv.org/abs/1406.1078v3
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://ieeexplore.ieee.org/document/6795963/
https://doi.org/10.1109/ICCV.2015.123
https://arxiv.org/abs/1502.03167v1
http://proceedings.mlr.press/v37/ioffe15.pdf
http://proceedings.mlr.press/v37/ioffe15.pdf
http://jmlr.org/papers/v15/srivastava14a.html
https://www.isca-speech.org/archive/archive_papers/eurospeech_1999/e99_2347.pdf
https://www.isca-speech.org/archive/archive_papers/eurospeech_1999/e99_2347.pdf
https://doi.org/10.1121/1.395275
https://doi.org/10.1121/1.395275
https://doi.org/10.1109/ICASSP.1996.541110
https://arxiv.org/abs/1609.03499v2
https://arxiv.org/abs/1609.03499v2
https://arxiv.org/abs/1609.03499v2

REFERENCES

pp. 195–204. arXiv: 1702.07825v2. [Online]. Available: http://proceedings.mlr.
press/v70/arik17a/arik17a.pdf.

[38] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A Vocoder-Based High-Quality
Speech Synthesis System for Real-Time Applications”, IEICE Transactions on In-
formation and Systems, vol. E99.D, no. 7, pp. 1877–1884, Jul. 2016, issn: 0916-8532.
doi: 10.1587/transinf.2015EDP7457.

[39] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y.
Wang, R. J. Skerry-Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu, “Natural
TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions”, Feb.
2018. arXiv: 1712.05884v2. [Online]. Available: https://arxiv.org/abs/1712.
05884v2.

[40] S. Ö. Arik, G. Diamos, A. Gibiansky, J. Miller, K. Peng, W. Ping, J. Raiman, and Y.
Zhou, “Deep Voice 2: Multi-Speaker Neural Text-to-Speech”, in Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Long Beach, CA, USA: Curran
Associates, Inc., Sep. 2017, pp. 2962–2970. arXiv: 1705.08947v2. [Online]. Available:
https://arxiv.org/abs/1705.08947v2.

[41] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S. Narang, J. Raiman,
and J. Miller, “Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence
Learning”, Feb. 2018. arXiv: 1710.07654v3. [Online]. Available: https://arxiv.
org/abs/1710.07654v3.

[42] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway Networks”, 2015. arXiv:
1505.00387v2. [Online]. Available: https://arxiv.org/abs/1505.00387v2.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition”, in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA: IEEE, Dec. 2016, pp. 770–778. doi: 10.1109/CVPR.
2016.90.

[44] D. L. Sun and J. O. Smith, “Estimating a Signal from a Magnitude Spectrogram via
Convex Optimization”, in 133rd AES Convention, San Francisco, CA, USA: Audio
Engineering Society, Inc., Oct. 2012. arXiv: 1209.2076v1. [Online]. Available: https:
//arxiv.org/abs/1209.2076v1.

[45] D. W. Griffin and J. S. Lim, “Signal Estimation from Modified Short-Time Fourier
Transform”, in IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 32, IEEE, 1984, pp. 236–243. doi: 10.1109/TASSP.1984.1164317.

[46] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-Aware Neural Language
Models”, in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
Phoenix, Arizona: AAAI Press, Feb. 2016, pp. 2741–2749. arXiv: 1508.06615v4.
[Online]. Available: https://arxiv.org/abs/1508.06615v4.

[47] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y.
Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S.
Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J.
Dean, “Google’s Neural Machine Translation System: Bridging the Gap between Hu-
man and Machine Translation”, Oct. 2016. arXiv: 1609.08144v2. [Online]. Available:
https://arxiv.org/abs/1609.08144v2.

57

https://arxiv.org/abs/1702.07825v2
http://proceedings.mlr.press/v70/arik17a/arik17a.pdf
http://proceedings.mlr.press/v70/arik17a/arik17a.pdf
https://doi.org/10.1587/transinf.2015EDP7457
https://arxiv.org/abs/1712.05884v2
https://arxiv.org/abs/1712.05884v2
https://arxiv.org/abs/1712.05884v2
https://arxiv.org/abs/1705.08947v2
https://arxiv.org/abs/1705.08947v2
https://arxiv.org/abs/1710.07654v3
https://arxiv.org/abs/1710.07654v3
https://arxiv.org/abs/1710.07654v3
https://arxiv.org/abs/1505.00387v2
https://arxiv.org/abs/1505.00387v2
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1209.2076v1
https://arxiv.org/abs/1209.2076v1
https://arxiv.org/abs/1209.2076v1
https://doi.org/10.1109/TASSP.1984.1164317
https://arxiv.org/abs/1508.06615v4
https://arxiv.org/abs/1508.06615v4
https://arxiv.org/abs/1609.08144v2
https://arxiv.org/abs/1609.08144v2

REFERENCES

[48] C. Veaux, J. Yamagishi, and K. MacDonald, CSTR VCTK Corpus: English Multi-
speaker Corpus for CSTR Voice Cloning Toolkit, 2012. [Online]. Available: https:
//datashare.is.ed.ac.uk/handle/10283/2651 (visited on 09/15/2018).

[49] SynSIG, Blizzard Challenge 2011, 2011. [Online]. Available: https://www.synsig.
org/index.php/Blizzard_Challenge_2011 (visited on 07/12/2018).

[50] K. Ito, The LJ Speech Dataset, 2017. [Online]. Available: https://keithito.com/
LJ-Speech-Dataset/.

[51] S. O. Ternström, “Hi-Fi voice: observations on the distribution of energy in the singing
voice spectrum above 5 kHz”, The Journal of the Acoustical Society of America,
vol. 123, no. 5, pp. 3379–3379, May 2008. doi: 10.1121/1.2934016.

[52] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks”, in Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics, Y. Whye and M. Titterington, Eds., vol. 9, Sardinia, Italy:
PMLR, 2010, pp. 249–256. doi: 10.1.1.207.2059.

[53] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”, in Proceed-
ings of the 3rd International Conference on Learning Representations (ICLR 2015),
San Diego, CA, USA, May 2015. arXiv: 1412.6980v9. [Online]. Available: https:
//arxiv.org/abs/1412.6980v9.

[54] S. Le Maguer and I. Steiner, “The MaryTTS entry for the Blizzard Challenge 2016”,
in Blizzard Challenge, Cupertino, CA, USA, Sep. 2016. [Online]. Available: http:
//festvox.org/blizzard/bc2016/MARYTTS_Blizzard2016.pdf.

[55] Z. Wu, O. Watts, and S. King, “Merlin: An Open Source Neural Network Speech
Synthesis System”, in 9th ISCA Speech Synthesis Workshop (SSW9), Sunnyvale, CA,
USA, Sep. 2016, pp. 202–207. doi: 10.21437/SSW.2016- 33. [Online]. Available:
http : / / www . isca - speech . org / archive / SSW _ 2016 / abstracts / ssw9 _ PS2 -
13_Wu.html.

[56] F. Ribeiro, D. Florêncio, C. Zhang, and M. Seltzer, “CROWDMOS: An approach
for crowdsourcing mean opinion score studies”, in 2011 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic:
IEEE, 2011, pp. 2416–2419. doi: 10.1109/ICASSP.2011.5946971.

[57] S. Imai, “Cepstral analysis synthesis on the mel frequency scale”, in ICASSP ’83.
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 8,
Institute of Electrical and Electronics Engineers, pp. 93–96. doi: 10.1109/ICASSP.
1983.1172250.

[58] A. F. Abka and H. F. Pardede, “Speech recognition features: Comparison studies on
robustness against environmental distortions”, in 2015 International Conference on
Computer, Control, Informatics and its Applications (IC3INA), IEEE, Oct. 2015,
pp. 114–119, isbn: 978-1-4799-8773-3. doi: 10.1109/IC3INA.2015.7377757.

[59] S. Takamichi, T. Toda, A. W. Black, G. Neubig, S. Sakti, and S. Nakamura, “Postfil-
ters to Modify the Modulation Spectrum for Statistical Parametric Speech Synthesis”,
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 4,
pp. 755–767, Apr. 2016, issn: 2329-9290. doi: 10.1109/TASLP.2016.2522655.

58

https://datashare.is.ed.ac.uk/handle/10283/2651
https://datashare.is.ed.ac.uk/handle/10283/2651
https://www.synsig.org/index.php/Blizzard_Challenge_2011
https://www.synsig.org/index.php/Blizzard_Challenge_2011
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
https://doi.org/10.1121/1.2934016
https://doi.org/10.1.1.207.2059
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
http://festvox.org/blizzard/bc2016/MARYTTS_Blizzard2016.pdf
http://festvox.org/blizzard/bc2016/MARYTTS_Blizzard2016.pdf
https://doi.org/10.21437/SSW.2016-33
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_PS2-13_Wu.html
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_PS2-13_Wu.html
https://doi.org/10.1109/ICASSP.2011.5946971
https://doi.org/10.1109/ICASSP.1983.1172250
https://doi.org/10.1109/ICASSP.1983.1172250
https://doi.org/10.1109/IC3INA.2015.7377757
https://doi.org/10.1109/TASLP.2016.2522655

REFERENCES

[60] E. H. Rothauser, W. D. Chapman, N. Guttman, H. R. Silbinger, M. H. L. Hecker,
G. E. Urbanek, K. S. Nordby, and M. Winstock, “IEEE Recommended Practice for
Speech Quality Measurements”, IEEE Transactions on Audio and Electroacoustics,
vol. 17, no. 3, pp. 225–246, 1969. doi: 10.1109/TAU.1969.1162058.

59

https://doi.org/10.1109/TAU.1969.1162058

A EVALUATION

Appendices

A Evaluation

A quality survey is conducted to assess the performance of the proposed architecture. The
objective is to asses how the Blizzard model (section 6.1) ranks in a direct comparison
against two other models. This is not a statistically representative study, but a small scale
informal estimation. The concrete question is: Is there a significant difference between
the Mean Opinion Scores (MOSs) of the reference models compared to the proposed model?

The remainder of this section is organized as follows: Section A.1 introduces the MOS
scale as well as the reference systems. Subsequently, it formulates the null hypothesis that
is tested using the survey in a paired difference hypothesis test. Section A.2 characterizes
the approach and describes how the hypothesis test and the collected ratings are analyzed.
The results are presented and discussed in the main thesis in section 6.7.

A.1 Survey Design

Evaluating a Text-to-Speech (TTS) system involves human perception, this is commonly
captured using subjective listening tests [1, 39, 37, 40]. In this evaluation naturalness
is measured by conducting paired comparison tests assigning MOSs (see section A.1.1).
Comparing the performance of the Blizzard model discussed in section 6.1 against two
other reference TTS systems. Namely, the Merlin toolkit [55] and the MaryTTS system
[54] (see section A.1.2). The reference systems are trained on the same subset of the
Blizzard dataset to ensure comparability of the results.

The study is conducted on a small scale with unpaid volunteers answering questions
on a website. Attendants are allowed to participate independently of the used hardware
or their location. While this is not a controlled environment with specific audio charac-
teristics, it is sufficient for assessing how the models relate to each other.

Contrary to some publications mentioned above, sentences used in the evaluation are
not selected from the test portion of the dataset. Tacotron and Tacotron 2 for example
used 100 randomly selected unseen sentences from their internal non-public datasets
[1, 39]. Due to the limited data available, this survey does not use sentences from the
dataset. Note that as a consequence listeners are not presented with an original sample
as reference. Hence, the ratings are not calibrated against a ground-truth.

For evaluation, 50 sentences not contained in the dataset are selected. Refer to appendix
section C for a listing. They consist of sentences with heteronyms21, tongue twisters and a
subset of the Harvard Sentences [60]. The idea behind selecting utterances with heteronyms
is that while models likely do not capture the meaning of the sentence, they have to produce
different pronunciations. Ideally producing varying prosody for the same words based on
the surrounding context. Additionally, the tongue twisters are included to test the models
ability to handle unusual sentences. This is supposed to stress the attention mechanism,
to make sure it is robust. Finally, a small subset of the Harvard Sentences is also included.
They are selected because they consist of phonetically balanced standardized phrases with

21Words that have a different pronunciation and meaning from another but the same spelling.

60

A EVALUATION

the phoneme frequencies resembling that of conventional English speech [60].

A.1.1 Mean Opinion Scores

Naturalness is often assessed using MOS were each listener indicates their opinion on a
5-point scale from 1 (bad) to 5 (excellent). [3, pp. 536 sq.] Table 6 lists the individual
levels of the used scale.

Table 6: Overview of the 5-point MOS scale used to measure the naturalness of speech.

Score Quality of the Speech Naturalness

5 Excellent Completely natural

4 Good Mostly natural

3 Fair Equally natural and unnatural

2 Poor Mostly unnatural

1 Bad Completely unnatural

Note that it is difficult to specifically determine what the listeners are actually assessing.
As hinted by Taylor, listeners generally tend to rate how much they like a system. He
reckons that this kind of scale is probably best suited for ranking tests, like the one carried
out in this thesis. [3, pp. 536 sq.]

A.1.2 Reference Models

The reference systems are trained on the same training subset of Blizzard dataset to ensure
comparability of the results.

Merlin Model (statistical parametric):
Merlin is an open-source Neural Network (NN) based speech synthesis system for
statistical parametric speech synthesis. Merlin is also the neural benchmark system
used in the 2016 Blizzard Challenge. [55]

For this survey a model using Festival22 as the front-end text processor and the
open-source WORLD23 vocoder is trained.

MarryTTS Model (unit selection):
MaryTTS is an open-source TTS synthesis platform that supports building voices
using unit selection and Hidden Markov Models (HMMs). [54]

For this survey the default configuration of MaryTTS based on the unit selection
paradigm is used. No manual tuning of the selection cost function or weights for
prosodic and phonological target features is carried out.

A.1.3 Null Hypothesis

Let µ̄r, µ̄b denote the actual MOS of the population for a reference system
r ∈ {MaryTTS,Merlin} and the proposed model b ∈ {Proposed}. The significance level is
chosen as α = 0.05. Then the null hypothesis H0 : µ̄r − µ̄b = 0 is formulated as follows:

22Festival Speech Synthesis System: http://www.cstr.ed.ac.uk/projects/festival/
23WORLD vocoder: https://github.com/mmorise/World

61

http://www.cstr.ed.ac.uk/projects/festival/
https://github.com/mmorise/World

A EVALUATION

There is no significant difference between the MOS from the reference models
and that of the proposed model.

Therefore, if the null hypothesis is rejected (i.e. µ̄r − µ̄b 6= 0) there exists a signifi-
cant difference in terms of the MOS between model a and model b. If rejecting the null
hypothesis fails, (i.e. µ̄r − µ̄b = 0), there is no significant difference between them.

A.2 Methodology

The survey is conducted in an uncontrolled environment, hence information on the setup
is collected to ensure the results can be put into perspective. Prior to starting the
evaluation each user is asked if he is using in-ear headphones, over-the-ear headphones,
desktop speakers or laptop speakers. This procedure is adopted from the crowdMOS
[56] approach. As described in [56], workers using loudspeakers generally have smaller
discrimination capacity than users wearing headphones. While participants are asked to
use headphones during the test, this configuration is not enforced. With this metadata
and the knowledge of the influence of the playback device it is possible to better assess
the results.

During the survey each participant rates samples from a pool of 50 unique sentences
that are the same for all listeners. For each sentence the listener is presented with three
audio files, each spoken by one of the evaluated systems. The order in which the samples are
presented is randomized with each utterance in order to prevent the users from predicting
their position and sticking to a pattern. In total each participant rates 150 audio files with
a duration of 2 to 10 seconds each.

A.2.1 Score Estimation

In total A = 3 algorithms are evaluated using S = 50 sentences. As all sentences
are spoken by each algorithm resulting in A ∗ S ratings for each of the P partici-
pants. It is ensured that each listener rates all samples. For each algorithm a, with
a ∈ {MaryTTS,Merlin,Proposed}, its mean rating score µ̄a needs to be estimated. Let
xas,p be the score given to sentence s by participant p for algorithm a, with 1 ≤ s ≤ S and
1 ≤ p ≤ P . Then the estimated mean score µ̂a ∈ R is calculated as shown in equation (25).

µ̂a =
1

SP

P∑
p=1

S∑
s=1

xas,p (25)

The standard deviation σ̂a,∆ ∈ R for algorithm a is estimated as shown in equation (26),
where ∆ ∈ {0, 1} denotes the delta degrees of freedom.

σ̂a,∆ =

√√√√√ P∑
p=1

S∑
s=1

(
xas,p − µ̂a

)2
SP −∆

(26)

Supplementary all investigations are given using both the uncorrected (∆ = 0) and the
corrected (∆ = 1) sample standard deviation.

62

A EVALUATION

A.2.2 Hypothesis Test

The tests rely on the standard normal distribution and make the following assumptions:

• The samples are sampled randomly.

• The population is normally distributed.

To determine if there is a difference in the population MOS between two models a
paired difference test is conducted. As the difference between scores can be negative or
positive a two-tailed test is implemented. The test statistic tr,∆ between model
r ∈ {MaryTTS,Merlin} and the proposed model b ∈ {Proposed} is calculated as shown
in equation (27). With N = SP and µ̂r, µ̂b being the estimated algorithm MOSs (see
section A.2.1). Additionally, µ̄r, µ̄b denote the population MOSs defined with the null
hypothesis H0 (see section A.1.3).

tr,∆ =
(µ̂r − µ̂b)− (µ̄r − µ̄b)√

σ̂2
r,∆

N +
σ̂2
b,∆

N

(27)

Further, let z∗ = Φ
(
1− α

2

)
be the critical value delimiting the rejection region, where Φ

denotes the cumulative distribution function of the standard normal distribution. H0 is
rejected if: tr,∆ ≤ (−z∗) or tr,∆ ≥ z∗. Contrary the test fails to rejectH0 if: tr,∆ ∈]−z∗, z∗[.

The p-value for a given test statistic tr,∆ is calculated as supplementary information as
shown in equation (28) to provide a representation that is more approachable.

pr,∆ = 2Φ (tr,∆) (28)

Consequentially using this representation H0 is rejected if: pr,∆ ≤ α smaller or equal to
the significance level α.

A.2.3 Confidence Intervals

For an algorithm a ∈ {MaryTTS,Merlin,Proposed} the confidence interval confa,∆ is es-
timated as shown in equation (29). Were z∗ denotes the critical value and ∆ denotes the
delta degrees of freedom.

confa,∆(z∗) =

(
µ̂a − z∗

σ̂a,∆√
N
, µ̂a + z∗

σ̂a,∆√
N

)
(29)

63

B CORPORA STATISTICS

B Corpora Statistics

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Duration (seconds)

0

100

200

300

400

C
ou

n
t

(a) Distribution of the file durations in the Blizzard Nancy dataset. The bulk of the files
has a duration between 0.7 and 10 seconds. Only a small portion of files has a duration
above 12.5 seconds with single files even being as long as 20 seconds. Plotted using a
total of 100 bins.

0 2 4 6 8 10

Duration (seconds)

0

50

100

150

200

C
ou

n
t

(b) Distribution of the file durations in the LJ Speech v1.1 dataset. The file durations
range from roughly 1 up to 10 seconds and the number of files available increases with
the file duration. It can be seen that the dataset does not contain samples that are longer
than roughly 10.1 seconds. Plotted using a total of 100 bins.

Figure 26: Distribution of the file durations in the used corpora

64

B CORPORA STATISTICS

Table 7: Statistics for the Blizzard Nancy and the LJ Speech dataset.

Property Blizzard Nancy LJ Speech v1.1

Total Size 1.9 GB 3.6 GB
License Research License Agreementb Public Domainc

Format 16-bit PCM WAV 16-bit PCM WAV
Sampling 16,000 Hz 22,050 Hz

Speakers 1 1
Language English English
Sex Female Female
Accent US US

Total Words 170,018 225,715
Distinct Words 26,786 13,821
Mean Words per Clip 14.06 17.23
Total Characters 993,612 1,308,674
Distinct Characters 35 40 (37 used)

Total Duration 16:45:36 23:55:17
Mean Clip Duration 4.99 s 6.57 s
Min Clip Duration 0.70 s 1.11 s
Max Clip Duration 20.18 s 10.10 s

Total Clips 12,187 (12,095 used) 13,100 (13,100 used)
Train Clips 11,000 12,000
Validate Clips 1,095 1,100

b Blizzard Nancy license: http://www.cstr.ed.ac.uk/projects/blizzard/2011/
lessac_blizzard2011/license.html
c LJ Speech license: https://librivox.org/pages/public-domain/

65

http://www.cstr.ed.ac.uk/projects/blizzard/2011/lessac_blizzard2011/license.html
http://www.cstr.ed.ac.uk/projects/blizzard/2011/lessac_blizzard2011/license.html
https://librivox.org/pages/public-domain/

C EVALUATION SENTENCES

C Evaluation Sentences

Listing of the 50 sentences used in the evaluation survey. The sentences are pre-processed
before synthesis as described in section 5.2.1.

1 Clowns grow glowing crowns.
2 I did not object to the object.
3 I met an august man last August.
4 Don ’t desert me here in the desert!
5 Four hours of steady work faced us.
6 A rod is used to catch pink salmon.
7 Black background , brown background.
8 Seventy -seven benevolent elephants.
9 Rice is often served in round bowls.

10 A pessemistic pest exists amidst us.
11 We must polish the Polish furniture.
12 The boy was there when the sun rose.
13 Do you know what a buck does to does?
14 The juice of lemons makes fine punch.
15 It ’s easy to tell the depth of a well.
16 Santa is ready to present the present.
17 The garden was used to produce produce.
18 A pot of tea helps to pass the evening.
19 These days a chicken leg is a rare dish.
20 Large size in stockings is hard to sell.
21 The salt breeze came across from the sea.
22 The wind was too strong to wind the sail.
23 Kick the ball straight and follow through.
24 The insurance was invalid for the invalid.
25 The birch canoe slid on the smooth planks.
26 He could lead if he would get the lead out.
27 Glue the sheet to the dark blue background.
28 I was reading a book in Reading , Berkshire.
29 Which witch switched the Swiss wristwatches?
30 When shot at , the dove dove into the bushes.
31 Can you can a can as a canner can can a can?
32 They were too close to the door to close it.
33 A loyal warrior will rarely worry why we rule.
34 He thought it was time to present the present.
35 After a number of injections my jaw got number.
36 The weather was beginning to affect his affect.
37 I had to subject the subject to a series of tests.
38 How can I intimate this to my most intimate friend?
39 Upon seeing the tear in the painting I shed a tear.
40 The soldier decided to desert his post in the desert.
41 A seamstress and a sewer fell down into a sewer line.
42 Give papa a cup of proper coffe in a copper coffe cup.
43 The dump was so full that it had to refuse more refuse.
44 Frivolously fanciful Fannie fried fresh fish furiously.
45 To help with planting , the farmer taught his sow to sow.
46 Before I mow the lawn let me place this grain in the mow.
47 How much wood would a woodchuck chuck if a woodchuck could chuck wood?
48 I seconded the motion that the official be seconded to another department.
49 One morning I shot an elephant in my pajamas. How he got in my pajamas , I

don ’t know.
50 Peter Piper picked a peck of pickled peppers. How many pickled peppers did

Peter Piper pick?

66

Selbständigkeitserklärung

Ich versichere, die von mir vorgelegte Arbeit selbständig verfasst zu haben. Alle Stellen,
die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Arbeiten
anderer entnommen sind, habe ich als entnommen kenntlich gemacht.

Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit benutzt habe, sind angegeben. Die
Arbeit hat in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen
und ist noch nicht veröffentlicht worden. Ich bin mir bewusst, dass eine unwahre Erklärung
rechtliche Folgen haben wird.

Ort, Datum Unterschrift

	List of Abbreviations
	Glossary
	Introduction
	Contributions
	Thesis Structure
	Text-to-Speech Synthesis
	Methodology
	Objectives
	Physical Nature
	System Organization

	Background
	Neural Networks
	Feed Forward Neural Network
	Convolutional Neural Network
	Gated Recurrent Unit
	Bidirectional Gated Recurrent Unit
	Sequence to Sequence Architectures

	Batch Normalization
	Dropout
	Character Embeddings
	Gradient Clipping

	Related Work
	Model Components
	Highway Network
	CBHG Module
	Filter Bank
	Projections

	Luong Attention Mechanism
	Griffin-Lim Algorithm

	Method
	Model Architecture
	Encoder
	Decoder
	Post-Processing
	Waveform Synthesis

	Corpora
	Pre-Processing
	Feature Extraction

	Training Description
	Evaluation Metric
	Hyper-Parameters
	Experiments

	Results and Discussion
	Blizzard Model Training
	Results
	Discussion

	LJ Speech Model Training
	Results
	Discussion

	General Training Discussion
	Feature Size
	Results
	Discussion

	Post-Processing
	Results
	Discussion

	Spectrogram Inversion
	Results
	Discussion

	Evaluation Survey
	Results
	Discussion

	Conclusions
	Summary
	Limitations And Practical Implications
	Future Work

	Acknowledgments
	List of Figures
	List of Tables
	References
	Appendices
	Evaluation
	Survey Design
	Mean Opinion Scores
	Reference Models
	Null Hypothesis

	Methodology
	Score Estimation
	Hypothesis Test
	Confidence Intervals

	Corpora Statistics
	Evaluation Sentences

